TY - JOUR A1 - Luetkens, Karsten Sebastian A1 - Grunz, Jan-Peter A1 - Kunz, Andreas Steven A1 - Huflage, Henner A1 - Weißenberger, Manuel A1 - Hartung, Viktor A1 - Patzer, Theresa Sophie A1 - Gruschwitz, Philipp A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Feldle, Philipp T1 - Ultra-high-resolution photon-counting detector CT arthrography of the ankle: a feasibility study JF - Diagnostics N2 - This study was designed to investigate the image quality of ultra-high-resolution ankle arthrography employing a photon-counting detector CT. Bilateral arthrograms were acquired in four cadaveric specimens with full-dose (10 mGy) and low-dose (3 mGy) scan protocols. Three convolution kernels with different spatial frequencies were utilized for image reconstruction (ρ\(_{50}\); Br98: 39.0, Br84: 22.6, Br76: 16.5 lp/cm). Seven radiologists subjectively assessed the image quality regarding the depiction of bone, hyaline cartilage, and ligaments. An additional quantitative assessment comprised the measurement of noise and the computation of contrast-to-noise ratios (CNR). While an optimal depiction of bone tissue was achieved with the ultra-sharp Br98 kernel (S ≤ 0.043), the visualization of cartilage improved with lower modulation transfer functions at each dose level (p ≤ 0.014). The interrater reliability ranged from good to excellent for all assessed tissues (intraclass correlation coefficient ≥ 0.805). The noise levels in subcutaneous fat decreased with reduced spatial frequency (p < 0.001). Notably, the low-dose Br76 matched the CNR of the full-dose Br84 (p 0.999) and superseded Br98 (p < 0.001) in all tissues. Based on the reported results, a photon-counting detector CT arthrography of the ankle with an ultra-high-resolution collimation offers stellar image quality and tissue assessability, improving the evaluation of miniscule anatomical structures. While bone depiction was superior in combination with an ultra-sharp convolution kernel, soft tissue evaluation benefited from employing a lower spatial frequency. KW - photon-counting CT KW - arthrography KW - ankle KW - cartilage KW - radiation dosage Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362622 SN - 2075-4418 VL - 13 IS - 13 ER - TY - JOUR A1 - Weißenberger, Manuel A1 - Wagenbrenner, Mike A1 - Nickel, Joachim A1 - Ahlbrecht, Rasmus A1 - Blunk, Torsten A1 - Steinert, Andre F. A1 - Gilbert, Fabian T1 - Comparative in vitro treatment of mesenchymal stromal cells with GDF-5 and R57A induces chondrogenic differentiation while limiting chondrogenic hypertrophy JF - Journal of Experimental Orthopaedics N2 - Purpose Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. Methods Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. Results Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. Conclusions R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1. KW - bone marrow KW - cartilage KW - chondrogenesis KW - chondrogenic hypertrophy KW - mesenchymal stromal cell KW - GDF-5 KW - R57A Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357770 VL - 10 ER - TY - JOUR A1 - Heinz, Tizian A1 - Meller, Felix A1 - Luetkens, Karsten Sebastian A1 - Anderson, Philip Mark A1 - Stratos, Ioannis A1 - Horas, Konstantin A1 - Rudert, Maximilian A1 - Reppenhagen, Stephan A1 - Weißenberger, Manuel T1 - The AMADEUS score is not a sufficient predictor for functional outcome after high tibial osteotomy JF - Journal of Experimental Orthopaedics N2 - Purpose The Area Measurement And Depth Underlying Structures (AMADEUS) classification system has been proposed as a valuable tool for magnetic resonance (MR)-based grading of preoperatively encountered chondral defects of the knee joint. However, the potential relationship of this novel score with clinical data was yet to determine. It was the primary intention of this study to assess the correlative relationship of the AMADEUS with patient reported outcome scores in patients undergoing medial open-wedge high tibial valgus osteotomy (HTO). Furthermore, the arthroscopic ICRS (International Cartilage Repair Society) grade evaluation was tested for correlation with the AMADEUS classification system. Methods This retrospective, monocentric study found a total of 70 individuals that were indicated for HTO due to degenerative chondral defects of the medial compartment between 2008 and 2019. A preoperative MR image as well as a pre-osteotomy diagnostic arthroscopy for ICRS grade evaluation was mandatory for all patients. The Knee Osteoarthritis Outcome Score (KOOS) including its five subscale scores (KOOS-ADL, KOOS-QOL, KOOS-Sports, KOOS-Pain, KOOS-Symptoms) was obtained preoperatively and at a mean follow-up of 41.2 ± 26.3 months. Preoperative chondral defects were evaluated using the AMADEUS classification system and the final AMADEUS scores were correlated with the pre- and postoperative KOOS subscale sores. Furthermore, arthroscopic ICRS defect severity was correlated with the AMADEUS classification system. Results There was a statistically significant correlation between the AMADEUS BME (bone marrow edema) subscore and the KOOS Symptoms subscore at the preoperative visit (r = 0.25, p = 0.04). No statistically significant monotonic association between the AMADEUS total score and the AMADEUS grade with pre- and postoperative KOOS subscale scores were found. Intraoperatively obtained ICRS grade did reveal a moderate correlative relation with the AMADEUS total score and the AMADEUS grade (r = 0.28, p = 0.02). Conclusions The novel AMADEUS classification system largely lacks correlative capacity with patient reported outcome measures in patients undergoing HTO. The MR tomographic appearance of bone marrow edema is the only parameter predictive of the clinical outcome at the preoperative visit. KW - cartilage KW - AMADEUS KW - KOOS KW - knee KW - high tibial osteotomy KW - chondral defect KW - osteoarthritis KW - PROM KW - correlation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357765 VL - 10 ER - TY - JOUR A1 - Weißenberger, Manuel A1 - Wagenbrenner, Mike A1 - Schote, Fritz A1 - Horas, Konstantin A1 - Schäfer, Thomas A1 - Rudert, Maximilian A1 - Barthel, Thomas A1 - Heinz, Tizian A1 - Reppenhagen, Stephan T1 - The 3-triangle method preserves the posterior tibial slope during high tibial valgus osteotomy: first preliminary data using a mathematical model JF - Journal of Experimental Orthopaedics N2 - Purpose Despite much improved preoperative planning techniques accurate intraoperative assessment of the high tibial valgus osteotomy (HTO) remains challenging and often results in coronal over- and under-corrections as well as unintended changes of the posterior tibial slope. Noyes et al. reported a novel method for accurate intraoperative coronal and sagittal alignment correction based on a three-dimensional mathematical model. This is the first study examining preliminary data via the proposed Noyes approach for accurate intraoperative coronal and sagittal alignment correction during HTO. Methods From 2016 to 2020 a total of 24 patients (27 knees) underwent HTO applying the proposed Noyes method (Noyes-Group). Radiographic data was analyzed retrospectively and matched to patients that underwent HTO using the conventional method, i.e., gradual medial opening using a bone spreader under fluoroscopic control (Conventional-Group). All operative procedures were performed by an experienced surgeon at a single orthopaedic university center. Results From the preoperative to the postoperative visit no statistically significant changes of the posterior tibial slope were noted in the Noyes-Group compared to a significant increase in the Conventional-Group (p = 0.01). Regarding the axial alignment no significant differences between both groups were observed pre- and postoperatively. The number of over- and under-corrections did not differ significantly between both groups. Linear regression analysis showed a significant correlation of the postoperative medial proximal tibial angle (MPTA) with the position of the weightbearing line on the tibial plateau. Conclusion The 3-triangle method by Noyes seems to be a promising approach for preservation of the posterior tibial slope during HTO. KW - knee KW - high tibial valgus osteotomy KW - axial alignment KW - posterior tibial slope KW - weight bearing line KW - cartilage KW - triangle method KW - osteoarthritis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300806 SN - 2197-1153 VL - 9 ER - TY - JOUR A1 - Paudel, Rupesh A1 - Fusi, Lorenza A1 - Schmidt, Marc T1 - The MEK5/ERK5 pathway in health and disease JF - International Journal of Molecular Sciences N2 - The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway. KW - atherosclerosis KW - bone KW - cartilage KW - endothelium KW - extracellular-regulated kinase 5 KW - Krüppel-like factor KW - mechanotransduction KW - mitogen-activated protein kinase KW - stress signaling KW - tumor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261638 SN - 1422-0067 VL - 22 IS - 14 ER - TY - JOUR A1 - Frischholz, Sebastian A1 - Berberich, Oliver A1 - Böck, Thomas A1 - Meffert, Rainer H. A1 - Blunk, Torsten T1 - Resveratrol counteracts IL‐1β‐mediated impairment of extracellular matrix deposition in 3D articular chondrocyte constructs JF - Journal of Tissue Engineering and Regenerative Medicine N2 - When aiming at cell‐based therapies in osteoarthritis (OA), proinflammatory conditions mediated by cytokines such as IL‐1β need to be considered. In recent studies, the phytoalexin resveratrol (RSV) has exhibited potent anti‐inflammatory properties. However, long‐term effects on 3D cartilaginous constructs under inflammatory conditions with regard to tissue quality, especially extracellular matrix (ECM) composition, have remained unexplored. Therefore, we employed long‐term model cultures for cell‐based therapies in an in vitro OA environment and evaluated effects of RSV. Pellet constructs made from expanded porcine articular chondrocytes were cultured with either IL‐1β (1–10 ng/ml) or RSV (50 μM) alone, or a cotreatment with both agents. Treatments were applied for 14 days, either directly after pellet formation or after a preculture period of 7 days. Culture with IL‐1β (10 ng/ml) decreased pellet size and DNA amount and severely compromised glycosaminoglycan (GAG) and collagen content. Cotreatment with RSV distinctly counteracted the proinflammatory catabolism and led to partial rescue of the ECM composition in both culture systems, with especially strong effects on GAG. Marked MMP13 expression was detected in IL‐1β‐treated pellets, but none upon RSV cotreatment. Expression of collagen type I was increased upon IL‐1β treatment and still observed when adding RSV, whereas collagen type X, indicating hypertrophy, was detected exclusively in pellets treated with RSV alone. In conclusion, RSV can counteract IL‐1β‐mediated degradation and distinctly improve cartilaginous ECM deposition in 3D long‐term inflammatory cultures. Nevertheless, potential hypertrophic effects should be taken into account when considering RSV as cotreatment for articular cartilage repair techniques. KW - articular chondrocytes KW - cartilage KW - cell‐based therapy KW - extracellular matrix KW - IL‐1β KW - inflammation KW - osteoarthritis KW - resveratrol Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215471 VL - 14 IS - 7 SP - 897 EP - 908 ER - TY - JOUR A1 - Schmidt, Stefanie A1 - Abinzano, Florencia A1 - Mensinga, Anneloes A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Malda, Jos A1 - Levato, Riccardo A1 - Blunk, Torsten T1 - Differential production of cartilage ECM in 3D agarose constructs by equine articular cartilage progenitor cells and mesenchymal stromal cells JF - International Journal of Molecular Sciences N2 - Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering. KW - ACPC KW - chondroprogenitors KW - tissue engineering KW - MSC KW - agarose KW - hypoxia KW - ECM KW - co-culture KW - zonal KW - cartilage Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236180 SN - 1422-0067 VL - 21 IS - 19 ER - TY - JOUR A1 - Jessberger, Steffen A1 - Högger, Petra A1 - Genest, Franca A1 - Salter, Donald M. A1 - Seefried, Lothar T1 - Cellular pharmacodynamic effects of Pycnogenol\(^{®}\) in patients with severe osteoarthritis: a randomized controlled pilot study JF - BMC Complementary and Alternative Medicine N2 - Background: The standardized maritime pine bark extract (Pycnogenol\(^{®}\)) has previously shown symptom alleviating effects in patients suffering from moderate forms of knee osteoarthritis (OA). The cellular mechanisms for this positive impact are so far unknown. The purpose of the present randomized pilot controlled study was to span the knowledge gap between the reported clinical effects of Pycnogenol\(^{®}\) and its in vivo mechanism of action in OA patients. Methods: Thirty three patients with severe OA scheduled for a knee arthroplasty either received 100 mg of Pycnogenol\(^{®}\) twice daily or no treatment (control group) three weeks before surgery. Cartilage, synovial fluid and serum samples were collected during surgical intervention. Relative gene expression of cartilage homeostasis markers were analyzed in the patients' chondrocytes. Inflammatory and cartilage metabolism mediators were investigated in serum and synovial fluid samples. Results: The oral intake of Pycnogenol\(^{®}\) downregulated the gene expression of various cartilage degradation markers in the patients' chondrocytes, the decrease of MMP3, MMP13 and the pro-inflammatory cytokine IL1B were statistically significant (p ≤ 0.05). Additionally, protein concentrations of ADAMTS-5 in serum were reduced significantly (p ≤ 0.05) after three weeks intake of the pine bark extract. Conclusions: This is the first report about positive cellular effects of a dietary supplement on key catabolic and inflammatory markers in patients with severe OA. The results provide a rational basis for understanding previously reported clinical effects of Pycnogenol\(^{®}\) on symptom scores of patients suffering from OA. KW - maritime pine bark extract KW - qPCR KW - ADAMTS KW - cartilage KW - clinical study KW - osteoarthritis KW - Pycnogenol KW - serum KW - synovial fluid Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159532 VL - 17 IS - 537 ER -