TY - JOUR A1 - Noll, Niklas A1 - Groß, Tobias A1 - Shoyama, Kazutaka A1 - Beuerle, Florian A1 - Würthner, Frank T1 - Folding‐Induced Promotion of Proton‐Coupled Electron Transfers via Proximal Base for Light‐Driven Water Oxidation JF - Angewandte Chemie International Edition N2 - Proton‐coupled electron‐transfer (PCET) processes play a key role in biocatalytic energy conversion and storage, for example, photosynthesis or nitrogen fixation. Here, we report a series of bipyridine‐containing di‐ to tetranuclear Ru(bda) macrocycles 2 C–4 C (bda: 2,2′‐bipyridine‐6,6′‐dicarboxylate) to promote O−O bond formation. In photocatalytic water oxidation under neutral conditions, all complexes 2 C–4 C prevail in a folded conformation that support the water nucleophilic attack (WNA) pathway with remarkable turnover frequencies of up to 15.5 s\(^{−1}\) per Ru unit respectively. Single‐crystal X‐ray analysis revealed an increased tendency for intramolecular π‐π stacking and preorganization of the proximal bases close to the active centers for the larger macrocycles. H/D kinetic isotope effect studies and electrochemical data demonstrate the key role of the proximal bipyridines as proton acceptors in lowering the activation barrier for the crucial nucleophilic attack of H\(_{2}\)O in the WNA mechanism. KW - artificial photosynthesis KW - folded macrocyles KW - homogeneous catalysis KW - photocatalysis KW - Ruthenium complexes Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312020 VL - 62 IS - 7 ER - TY - JOUR A1 - Schlossarek, Tim A1 - Stepanenko, Vladimir A1 - Beuerle, Florian A1 - Würthner, Frank T1 - Self‐assembled Ru(bda) Coordination Oligomers as Efficient Catalysts for Visible Light‐Driven Water Oxidation in Pure Water JF - Angewandte Chemie International Edition N2 - Water‐soluble multinuclear complexes based on ruthenium 2,2′‐bipyridine‐6,6′‐dicarboxylate (bda) and ditopic bipyridine linker units are investigated in three‐component visible light‐driven water oxidation catalysis. Systematic studies revealed a strong enhancement of the catalytic efficiency in the absence of organic co‐solvents and with increasing oligomer length. In‐depth kinetic and morphological investigations suggest that the enhanced performance is induced by the self‐assembly of linear Ru(bda) oligomers into aggregated superstructures. The obtained turnover frequencies (up to 14.9 s\(^{−1}\)) and turnover numbers (more than 1000) per ruthenium center are the highest reported so far for Ru(bda)‐based photocatalytic water oxidation systems. KW - artificial photosynthesis KW - coordination oligomer KW - photocatalysis KW - Ruthenium complexes KW - water oxidation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312184 VL - 61 IS - 52 ER -