TY - JOUR A1 - Zernecke, Alma T1 - Distinct functions of specialized dendritic cell subsets in atherosclerosis and the road ahead JF - Scientifica N2 - Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs) and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis. KW - atherosclerotic vascular disease Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120241 VL - 2014 ER - TY - JOUR A1 - Winter, Patrick M. A1 - Andelovic, Kristina A1 - Kampf, Thomas A1 - Hansmann, Jan A1 - Jakob, Peter Michael A1 - Bauer, Wolfgang Rudolf A1 - Zernecke, Alma A1 - Herold, Volker T1 - Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch JF - Journal of Cardiovascular Magnetic Resonance N2 - Purpose Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement. Methods Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE\(^{−/−}\) mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification. Results 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE\(^{−/−}\) mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m\(^2\) in wildtype mice and (1.27 ± 0.10) N/m\(^2\) in ApoE\(^{−/−}\) mice. Conclusion The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements. KW - 4D flow KW - pulse wave velocity KW - wall shear stress KW - radial KW - self-navigation KW - mouse KW - aortic arch KW - atherosclerosis KW - mice KW - flow KW - plaque KW - CMR KW - quantification KW - microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259152 VL - 23 IS - 1 ER - TY - JOUR A1 - Winter, Patrick A1 - Andelovic, Kristina A1 - Kampf, Thomas A1 - Gutjahr, Fabian Tobias A1 - Heidenreich, Julius A1 - Zernecke, Alma A1 - Bauer, Wolfgang Rudolf A1 - Jakob, Peter Michael A1 - Herold, Volker T1 - Fast self-navigated wall shear stress measurements in the murine aortic archusing radial 4D-phase contrast cardiovascular magnetic resonance at 17.6 T JF - Journal of Cardiovascular Magnetic Resonance N2 - Purpose 4D flow cardiovascular magnetic resonance (CMR) and the assessment of wall shear stress (WSS) are non-invasive tools to study cardiovascular risks in vivo. Major limitations of conventional triggered methods are the long measurement times needed for high-resolution data sets and the necessity of stable electrocardiographic (ECG) triggering. In this work an ECG-free retrospectively synchronized method is presented that enables accelerated high-resolution measurements of 4D flow and WSS in the aortic arch of mice. Methods 4D flow and WSS were measured in the aortic arch of 12-week-old wildtype C57BL/6 J mice (n = 7) with a radial 4D-phase-contrast (PC)-CMR sequence, which was validated in a flow phantom. Cardiac and respiratory motion signals were extracted from the radial CMR signal and were used for the reconstruction of 4D-flow data. Rigid motion correction and a first order B0 correction was used to improve the robustness of magnitude and velocity data. The aortic lumen was segmented semi-automatically. Temporally averaged and time-resolved WSS and oscillatory shear index (OSI) were calculated from the spatial velocity gradients at the lumen surface at 14 locations along the aortic arch. Reproducibility was tested in 3 animals and the influence of subsampling was investigated. Results Volume flow, cross-sectional areas, WSS and the OSI were determined in a measurement time of only 32 min. Longitudinal and circumferential WSS and radial stress were assessed at 14 analysis planes along the aortic arch. The average longitudinal, circumferential and radial stress values were 1.52 ± 0.29 N/m2, 0.28 ± 0.24 N/m2 and − 0.21 ± 0.19 N/m2, respectively. Good reproducibility of WSS values was observed. Conclusion This work presents a robust measurement of 4D flow and WSS in mice without the need of ECG trigger signals. The retrospective approach provides fast flow quantification within 35 min and a flexible reconstruction framework. KW - 4D flow KW - WSS KW - OSI KW - Self-navigation KW - Mouse KW - Aortic arch Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201120 VL - 21 ER - TY - JOUR A1 - Wildgruber, Moritz A1 - Aschenbrenner, Teresa A1 - Wendorff, Heiko A1 - Czubba, Maria A1 - Glinzer, Almut A1 - Haller, Bernhard A1 - Schiemann, Matthias A1 - Zimmermann, Alexander A1 - Berger, Hermann A1 - Eckstein, Hans-Henning A1 - Meier, Reinhard A1 - Wohlgemuth, Walter A. A1 - Libby, Peter A1 - Zernecke, Alma T1 - The "Intermediate" CD14\(^{++}\)CD16\(^{+}\) monocyte subset increases in severe peripheral artery disease in humans JF - Scientific Reports N2 - Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14\(^{++}\)CD16\(^{-}\) classical monocytes, CD14\(^{+}\)CD16\(^{++}\) non-classical monocytes and CD14\(^{++}\)CD16\(^{+}\) intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14\(^{++}\)CD16\(^{+}\) intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14\(^{++}\)CD16\(^{-}\) classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis. KW - peripheral artery occlusive disease KW - monocyte subset KW - humans Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167476 VL - 6 IS - 39483 ER - TY - JOUR A1 - Ungern-Sternberg, Saskia N. I. von A1 - Zernecke, Alma A1 - Seizer, Peter T1 - Extracellular matrix metalloproteinase inducer EMMPRIN (CD147) in cardiovascular disease JF - International Journal of Molecular Sciences N2 - The receptor EMMPRIN is involved in the development and progression of cardiovascular diseases and in the pathogenesis of myocardial infarction. There are several binding partners of EMMPRIN mediating the effects of EMMPRIN in cardiovascular diseases. EMMPRIN interaction with most binding partners leads to disease progression by mediating cytokine or chemokine release, the activation of platelets and monocytes, as well as the formation of monocyte-platelet aggregates (MPAs). EMMPRIN is also involved in atherosclerosis by mediating the infiltration of pro-inflammatory cells. There is also evidence that EMMPRIN controls energy metabolism of cells and that EMMPRIN binding partners modulate intracellular glycosylation and trafficking of EMMPRIN towards the cell membrane. In this review, we systematically discuss these multifaceted roles of EMMPRIN and its interaction partners, such as Cyclophilins, in cardiovascular disease. KW - cardiovascular disease KW - immunoglobulin superfamily KW - inflammation KW - platelets KW - monocyte-platelet aggregates Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285014 SN - 1422-0067 VL - 19 IS - 2 ER - TY - JOUR A1 - Tilstam, Pathricia V. A1 - Gijbels, Marion J. A1 - Habbeddine, Mohamed A1 - Cudejko, Celine A1 - Asare, Yaw A1 - Theelen, Wendy A1 - Zhou, Baixue A1 - Döring, Yvonne A1 - Drechsler, Maik A1 - Pawig, Lukas A1 - Simsekyilmaz, Sakine A1 - Koenen, Rory R. A1 - de Winther, Menno P. J. A1 - Lawrence, Toby A1 - Bernhagen, Jürgen A1 - Zernecke, Alma A1 - Weber, Christian A1 - Noels, Heidi T1 - Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice JF - PLOS ONE N2 - Background: The Ikkα kinase, a subunit of the NF-kappa B-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikk alpha mutant knock-in on haematopoiesis and atherosclerosis in mice. Methods and Results: Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA) Apoe(-/-)) or with Ikkα(+/+) Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA) Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Conclusion: Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα AA mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach. KW - NF-KAPPA-B KW - regulatory T cells KW - indoleamine 2,3-dioxygenase KW - dendritic cells KW - gene expression KW - increases atherosclersosis KW - receptor KW - inhibition KW - pathway KW - beta Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117450 VL - 9 IS - 2 ER - TY - JOUR A1 - Soehnlein, Oliver A1 - Drechsler, Maik A1 - Döring, Yvonne A1 - Lievens, Dirk A1 - Hartwig, Helene A1 - Kemmerich, Klaus A1 - Ortega-Gómez, Almudena A1 - Mandl, Manuela A1 - Vijayan, Santosh A1 - Projahn, Delia A1 - Garlichs, Christoph D. A1 - Koenen, Rory R. A1 - Hristov, Mihail A1 - Lutgens, Esther A1 - Zernecke, Alma A1 - Weber, Christian T1 - Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes JF - EMBO Molecular Medicine N2 - We used a novel approach of cytostatically induced leucocyte depletion and subsequent reconstitution with leucocytes deprived of classical \((inflammatory/Gr1^{hi})\) or non-classical \((resident/Gr1^{lo})\) monocytes to dissect their differential role in atheroprogression under high-fat diet (HFD). Apolipoprotein E-deficient \((Apoe^{-/-})\) mice lacking classical but not non-classical monocytes displayed reduced lesion size and macrophage and apoptotic cell content. Conversely, HFD induced a selective expansion of classical monocytes in blood and bone marrow. Increased CXCL1 levels accompanied by higher expression of its receptor CXCR2 on classical monocytes and inhibition of monocytosis by CXCL1-neutralization indicated a preferential role for the CXCL1/CXCR2 axis in mobilizing classical monocytes during hypercholesterolemia. Studies correlating circulating and lesional classical monocytes in gene-deficient \(Apoe^{-/-}\) mice, adoptive transfer of gene-deficient cells and pharmacological modulation during intravital microscopy of the carotid artery revealed a crucial function of CCR1 and CCR5 but not CCR2 or \(CX_3CR1\) in classical monocyte recruitment to atherosclerotic vessels. Collectively, these data establish the impact of classical monocytes on atheroprogression, identify a sequential role of CXCL1 in their mobilization and CCR1/CCR5 in their recruitment. KW - hypercholeterolemia KW - CCR2 KW - atherosclerosis KW - chemokine KW - accumulation KW - subsets KW - inflammatory sites KW - fractalkine KW - marcophages KW - mobilization KW - monocyte KW - recruitment KW - bone-marrow KW - atheriosclerotic lesions KW - hyperlipedemic mice Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122204 SN - 1757-4676 VL - 5 ER - TY - JOUR A1 - Simsekyilmaz, Sakine A1 - Liehn, Elisa A. A1 - Weinandy, Stefan A1 - Schreiber, Fabian A1 - Megens, Remco T. A. A1 - Theelen, Wendy A1 - Smeets, Ralf A1 - Jockenhövel, Stefan A1 - Gries, Thomas A1 - Möller, Martin A1 - Klee, Doris A1 - Weber, Christian A1 - Zernecke, Alma T1 - Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice JF - PLoS ONE N2 - Atherosclerotic lesions that critically narrow the artery can necessitate an angioplasty and stent implantation. Long-term therapeutic effects, however, are limited by excessive arterial remodeling. We here employed a miniaturized nitinol-stent coated with star-shaped polyethylenglycole (star-PEG), and evaluated its bio-functionalization with RGD and CXCL1 for improving in-stent stenosis after implantation into carotid arteries of mice. Nitinol foils or stents (bare metal) were coated with star-PEG, and bio-functionalized with RGD, or RGD/CXCL1. Cell adhesion to star-PEG-coated nitinol foils was unaltered or reduced, whereas bio-functionalization with RGD but foremost RGD/CXCL1 increased adhesion of early angiogenic outgrowth cells (EOCs) and endothelial cells but not smooth muscle cells when compared with bare metal foils. Stimulation of cells with RGD/CXCL1 furthermore increased the proliferation of EOCs. In vivo, bio-functionalization with RGD/CXCL1 significantly reduced neointima formation and thrombus formation, and increased re-endothelialization in apoE\(^{-/-}\) carotid arteries compared with bare-metal nitinol stents, star-PEG-coated stents, and stents bio-functionalized with RGD only. Bio-functionalization of star-PEG-coated nitinol-stents with RGD/CXCL1 reduced in-stent neointima formation. By supporting the adhesion and proliferation of endothelial progenitor cells, RGD/CXCL1 coating of stents may help to accelerate endothelial repair after stent implantation, and thus may harbor the potential to limit the complication of in-stent restenosis in clinical approaches. KW - carotid arteries KW - polymers KW - stent implantation KW - coatings KW - endothelial cells KW - mice KW - fluorescence microscopy KW - stem cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179745 VL - 11 IS - 5 ER - TY - JOUR A1 - Schäfer, Sarah A1 - Zernecke, Alma T1 - CD8\(^+\) T cells in atherosclerosis JF - Cells N2 - Atherosclerotic lesions are populated by cells of the innate and adaptive immune system, including CD8\(^+\) T cells. The CD8\(^+\) T cell infiltrate has recently been characterized in mouse and human atherosclerosis and revealed activated, cytotoxic, and possibly dysfunctional and exhausted cell phenotypes. In mouse models of atherosclerosis, antibody-mediated depletion of CD8\(^+\) T cells ameliorates atherosclerosis. CD8\(^+\) T cells control monopoiesis and macrophage accumulation in early atherosclerosis. In addition, CD8\(^+\) T cells exert cytotoxic functions in atherosclerotic plaques and contribute to macrophage cell death and necrotic core formation. CD8\(^+\) T cell activation may be antigen-specific, and epitopes of atherosclerosis-relevant antigens may be targets of CD8\(^+\) T cells and their cytotoxic activity. CD8\(^+\) T cell functions are tightly controlled by costimulatory and coinhibitory immune checkpoints. Subsets of regulatory CD25\(^+\)CD8\(^+\) T cells with immunosuppressive functions can inhibit atherosclerosis. Importantly, local cytotoxic CD8\(^+\) T cell responses may trigger endothelial damage and plaque erosion in acute coronary syndromes. Understanding the complex role of CD8\(^+\) T cells in atherosclerosis may pave the way for defining novel treatment approaches in atherosclerosis. In this review article, we discuss these aspects, highlighting the emerging and critical role of CD8\(^+\) T cells in atherosclerosis. KW - atherosclerosis KW - CD8\(^+\) T cells KW - inflammation KW - cytotoxic T cells KW - single cell RNA sequencing KW - checkpoint inhibitors KW - immunotherapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220170 SN - 2073-4409 VL - 10 IS - 1 ER - TY - JOUR A1 - Rowinska, Zuzanna A1 - Gorressen, Simone A1 - Merx, Marc W. A1 - Koeppel, Thomas A. A1 - Liehn, Elisa A. A1 - Zernecke, Alma T1 - Establishment of a New Murine Elastase-Induced Aneurysm Model Combined with Transplantation JF - PLOS ONE N2 - Introduction: The aim of our study was to develop a reproducible murine model of elastase-induced aneurysm formation combined with aortic transplantation. Methods: Adult male mice (n = 6-9 per group) underwent infrarenal, orthotopic transplantation of the aorta treated with elastase or left untreated. Subsequently, both groups of mice were monitored by ultrasound until 7 weeks after grafting. Results: Mice receiving an elastase-pretreated aorta developed aneurysms and exhibited a significantly increased diastolic vessel diameter compared to control grafted mice at 7 week after surgery (1.11 +/- 0.10 mm vs. 0.75 +/- 0.03 mm; p <= 0.001). Histopathological examination revealed disruption of medial elastin, an increase in collagen content and smooth muscle cells, and neointima formation in aneurysm grafts. Conclusions: We developed a reproducible murine model of elastase-induced aneurysm combined with aortic transplantation. This model may be suitable to investigate aneurysm-specific inflammatory processes and for use in gene-targeted animals. KW - abdominal aortic-aneurysm KW - mouse models KW - prediction KW - dilation KW - rupture Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115774 SN - 1932-6203 VL - 9 IS - 7 ER - TY - JOUR A1 - Rossow, Leonie A1 - Veitl, Simona A1 - Vorlová, Sandra A1 - Wax, Jacqueline K. A1 - Kuhn, Anja E. A1 - Maltzahn, Verena A1 - Upcin, Berin A1 - Karl, Franziska A1 - Hoffmann, Helene A1 - Gätzner, Sabine A1 - Kallius, Matthias A1 - Nandigama, Rajender A1 - Scheld, Daniela A1 - Irmak, Ster A1 - Herterich, Sabine A1 - Zernecke, Alma A1 - Ergün, Süleyman A1 - Henke, Erik T1 - LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy JF - Oncogene N2 - The potential of altering the tumor ECM to improve drug response remains fairly unexplored. To identify targets for modification of the ECM aiming to improve drug response and overcome resistance, we analyzed expression data sets from pre-treatment patient cohorts. Cross-evaluation identified a subset of chemoresistant tumors characterized by increased expression of collagens and collagen-stabilizing enzymes. We demonstrate that strong collagen expression and stabilization sets off a vicious circle of self-propagating hypoxia, malignant signaling, and aberrant angiogenesis that can be broken by an appropriate auxiliary intervention: Interfering with collagen stabilization by inhibition of lysyl oxidases significantly enhanced response to chemotherapy in various tumor models, even in metastatic disease. Inhibition of collagen stabilization by itself can reduce or enhance tumor growth depending on the tumor type. The mechanistical basis for this behavior is the dependence of the individual tumor on nutritional supply on one hand and on high tissue stiffness for FAK signaling on the other. KW - Cancer models KW - Cancer therapeutic resistance KW - Targeted therapies KW - Tumour angiogenesis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227008 VL - 37 ER - TY - JOUR A1 - Rosa, Annabelle A1 - Butt, Elke A1 - Hopper, Christopher P. A1 - Loroch, Stefan A1 - Bender, Markus A1 - Schulze, Harald A1 - Sickmann, Albert A1 - Vorlova, Sandra A1 - Seizer, Peter A1 - Heinzmann, David A1 - Zernecke, Alma T1 - Cyclophilin a is not acetylated at lysine-82 and lysine-125 in resting and stimulated platelets JF - International Journal of Molecular Sciences N2 - Cyclophilin A (CyPA) is widely expressed by all prokaryotic and eukaryotic cells. Upon activation, CyPA can be released into the extracellular space to engage in a variety of functions, such as interaction with the CD147 receptor, that contribute to the pathogenesis of cardiovascular diseases. CyPA was recently found to undergo acetylation at K82 and K125, two lysine residues conserved in most species, and these modifications are required for secretion of CyPA in response to cell activation in vascular smooth muscle cells. Herein we addressed whether acetylation at these sites is also required for the release of CyPA from platelets based on the potential for local delivery of CyPA that may exacerbate cardiovascular disease events. Western blot analyses confirmed the presence of CyPA in human and mouse platelets. Thrombin stimulation resulted in CyPA release from platelets; however, no acetylation was observed—neither in cell lysates nor in supernatants of both untreated and activated platelets, nor after immunoprecipitation of CyPA from platelets. Shotgun proteomics detected two CyPA peptide precursors in the recombinant protein, acetylated at K28, but again, no acetylation was found in CyPA derived from resting or stimulated platelets. Our findings suggest that acetylation of CyPA is not a major protein modification in platelets and that CyPA acetylation is not required for its secretion from platelets. KW - Cyclophilin A KW - acetylation KW - platelets KW - CD147 KW - EMMPRIN Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284011 SN - 1422-0067 VL - 23 IS - 3 ER - TY - JOUR A1 - Projahn, Delia A1 - Simsekyilmaz, Sakine A1 - Singh, Smriti A1 - Kanzler, Isabella A1 - Kramp, Birgit K. A1 - Langer, Marcella A1 - Burlacu, Alexandrina A1 - Bernhagen, Jürgen A1 - Klee, Doris A1 - Zernecke, Alma A1 - Hackeng, Tilman M. A1 - Groll, Jürgen A1 - Weber, Christian A1 - Liehn, Elisa A. A1 - Koenen, Roy R. T1 - Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction JF - Journal of Cellular and Molecular Medicine N2 - Myocardial infarction (MI) induces a complex inflammatory immune response, followed by the remodelling of the heart muscle and scar formation. The rapid regeneration of the blood vessel network system by the attraction of hematopoietic stem cells is beneficial for heart function. Despite the important role of chemokines in these processes, their use in clinical practice has so far been limited by their limited availability over a long time-span in vivo. Here, a method is presented to increase physiological availability of chemokines at the site of injury over a defined time-span and simultaneously control their release using biodegradable hydrogels. Two different biodegradable hydrogels were implemented, a fast degradable hydrogel (FDH) for delivering Met-CCL5 over 24hrs and a slow degradable hydrogel (SDH) for a gradual release of protease-resistant CXCL12 (S4V) over 4weeks. We demonstrate that the time-controlled release using Met-CCL5-FDH and CXCL12 (S4V)-SDH suppressed initial neutrophil infiltration, promoted neovascularization and reduced apoptosis in the infarcted myocardium. Thus, we were able to significantly preserve the cardiac function after MI. This study demonstrates that time-controlled, biopolymer-mediated delivery of chemokines represents a novel and feasible strategy to support the endogenous reparatory mechanisms after MI and may compliment cell-based therapies. KW - chemokines KW - therapy KW - cardiovascular pharmacology KW - remodelling KW - endothelial progenitor cells KW - left-ventricular function KW - heart-failure KW - rat model KW - recruitment KW - factor-I Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116597 SN - 1582-4934 VL - 18 IS - 5 ER - TY - JOUR A1 - Kraft, Peter A1 - Schuhmann, Michael K. A1 - Garz, Cornelia A1 - Jandke, Solveig A1 - Urlaub, Daniela A1 - Mencl, Stine A1 - Zernecke, Alma A1 - Heinze, Hans-Jochen A1 - Carare, Roxana O. A1 - Kleinschnitz, Christoph A1 - Schreiber, Stefanie T1 - Hypercholesterolemia induced cerebral small vessel disease JF - PLoS ONE N2 - Background While hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr\(^{−/-}\) mouse model. Methods We used Ldlr\(^{−/-}\) mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr\(^{−/-}\) mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds. Results We found a significant increase in the number of erythrocyte stases in 6 months old Ldlr\(^{−/-}\) mice compared to all other groups (P < 0.05). Ldlr\(^{−/-}\) animals aged 12 months showed the highest number of thrombotic occlusions while in WT animals hardly any occlusions could be observed (P < 0.001). Compared to WT mice, Ldlr\(^{−/-}\) mice did not display significant gray matter BBB breakdown. Microhemorrhages were observed in one Ldlr\(^{−/-}\) mouse that was 6 months old. Results did not differ when considering subcortical and cortical regions. Conclusions In Ldlr\(^{−/-}\) mice, hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr\(^{−/-}\) mice appear to be an adequate animal model for research into CSVD. KW - hypercholesterolemia KW - cerebral small vessel disease KW - mouse model KW - histology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170493 VL - 12 IS - 8 ER - TY - JOUR A1 - Herrmann, Andreas B. A1 - Müller, Martha‐Lena A1 - Orth, Martin F. A1 - Müller, Jörg P. A1 - Zernecke, Alma A1 - Hochhaus, Andreas A1 - Ernst, Thomas A1 - Butt, Elke A1 - Frietsch, Jochen J. T1 - Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance JF - Journal of Cellular and Molecular Medicine N2 - Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR‐ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR‐ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1‐mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell‐mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance. KW - BCR‐ABL KW - CML KW - CXCR4 KW - LASP1 KW - nilotinib KW - precursor cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214122 VL - 24 IS - 5 SP - 2942 EP - 2955 ER - TY - JOUR A1 - Han, Yanshuo A1 - Tanios, Fadwa A1 - Reeps, Christian A1 - Zhang, Jian A1 - Schwamborn, Kristina A1 - Eckstein, Hans-Henning A1 - Zernecke, Alma A1 - Pelisek, Jaroslav T1 - Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm JF - Clinical Epigenetics N2 - Background Epigenetic modifications may play a relevant role in the pathogenesis of human abdominal aortic aneurysm (AAA). The aim of the study was therefore to investigate histone acetylation and expression of corresponding lysine [K] histone acetyltransferases (KATs) in AAA. Results A comparative study of AAA tissue samples (n = 37, open surgical intervention) and healthy aortae (n = 12, trauma surgery) was performed using quantitative PCR, immunohistochemistry (IHC), and Western blot. Expression of the KAT families GNAT (KAT2A, KAT2B), p300/CBP (KAT3A, KAT3B), and MYST (KAT5, KAT6A, KAT6B, KAT7, KAT8) was significantly higher in AAA than in controls (P ≤ 0.019). Highest expression was observed for KAT2B, KAT3A, KAT3B, and KAT6B (P ≤ 0.007). Expression of KAT2B significantly correlated with KAT3A, KAT3B, and KAT6B (r = 0.705, 0.564, and 0.528, respectively, P < 0.001), and KAT6B with KAT3A, KAT3B, and KAT6A (r = 0.407, 0.500, and 0.531, respectively, P < 0.05). Localization of highly expressed KAT2B, KAT3B, and KAT6B was further characterized by immunostaining. Significant correlations were observed between KAT2B with endothelial cells (ECs) (r = 0.486, P < 0.01), KAT3B with T cells and macrophages, (r = 0.421 and r = 0.351, respectively, P < 0.05), KAT6A with intramural ECs (r = 0.541, P < 0.001) and with a contractile phenotype of smooth muscle cells (SMCs) (r = 0.425, P < 0.01), and KAT6B with T cells (r = 0.553, P < 0.001). Furthermore, KAT2B was associated with AAA diameter (r = 0.382, P < 0.05), and KAT3B, KAT6A, and KAT6B correlated negatively with blood urea nitrogen (r = −0.403, −0.408, −0.478, P < 0.05). In addtion, acetylation of the histone substrates H3K9, H3K18 and H3K14 was increased in AAA compared to control aortae. Conclusions Our results demonstrate that aberrant epigenetic modifications such as changes in the expression of KATs and acetylation of corresponding histones are present in AAA. These findings may provide new insight in the pathomechanism of AAA. KW - acetyltransferases KW - epigenetics KW - AAA KW - histone acetylation KW - KAT/HAT Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162557 VL - 8 IS - 3 ER - TY - JOUR A1 - Gil-Pulido, Jesus A1 - Cochain, Clement A1 - Lippert, Malte A. A1 - Schneider, Nicole A1 - Butt, Elke A1 - Amézaga, Núria A1 - Zernecke, Alma T1 - Deletion of Batf3-dependent antigen-presenting cells does not affect atherosclerotic lesion formation in mice JF - PLoS ONE N2 - Atherosclerosis is the main underlying cause for cardiovascular events such as myocardial infarction and stroke and its development might be influenced by immune cells. Dendritic cells (DCs) bridge innate and adaptive immune responses by presenting antigens to T cells and releasing a variety of cytokines. Several subsets of DCs can be discriminated that engage specific transcriptional pathways for their development. Basic leucine zipper transcription factor ATF-like 3 (Batf3) is required for the development of classical CD8α\(^{+}\) and CD103\(^{+}\) DCs. By crossing mice deficient in Batf3 with atherosclerosis-prone low density lipoprotein receptor (Ldlr\(^{−/-}\))-deficient mice we here aimed to further address the contribution of Batf3-dependent CD8α\(^{+}\) and CD103\(^{+}\) antigen-presenting cells to atherosclerosis. We demonstrate that deficiency in Batf3 entailed mild effects on the immune response in the spleen but did not alter atherosclerotic lesion formation in the aorta or aortic root, nor affected plaque phenotype in low density lipoprotein receptor-deficient mice fed a high fat diet. We thus provide evidence that Batf3-dependent antigen-presenting cells do not have a prominent role in atherosclerosis. KW - atherosclerosis KW - dendritic cells KW - Batf3 KW - deficiency Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170535 VL - 12 IS - 8 ER - TY - JOUR A1 - García-Betancur, Juan-Carlos A1 - Goñi-Moreno, Angel A1 - Horger, Thomas A1 - Schott, Melanie A1 - Sharan, Malvika A1 - Eikmeier, Julian A1 - Wohlmuth, Barbara A1 - Zernecke, Alma A1 - Ohlsen, Knut A1 - Kuttler, Christina A1 - Lopez, Daniel T1 - Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus JF - eLife N2 - A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. KW - Staphylococcus aureus KW - infection KW - cell differentiation KW - pathogenic bacteria Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170346 VL - 6 IS - e28023 ER - TY - JOUR A1 - Endres, Marcel A1 - Kneitz, Susanne A1 - Orth, Martin F. A1 - Perera, Ruwan K. A1 - Zernecke, Alma A1 - Butt, Elke T1 - Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1) JF - Oncotarget N2 - The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies. KW - LASP1 KW - c-Fos KW - extracellular matrix KW - AP-1 KW - matrix metalloproteinases KW - breast cancer Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176920 VL - 7 IS - 39 ER - TY - JOUR A1 - Cochain, Clement A1 - Chaudhari, Sweena M. A1 - Koch, Miriam A1 - Wiendl, Heinz A1 - Eckstein, Hans-Henning A1 - Zernecke, Alma T1 - Programmed Cell Death-1 Deficiency Exacerbates T Cell Activation and Atherogenesis despite Expansion of Regulatory T Cells in Atherosclerosis-Prone Mice JF - PLoS ONE N2 - T cell activation represents a double-edged sword in atherogenesis, as it promotes both pro-inflammatory T cell activation and atheroprotective Foxp3(+) regulatory T cell (Treg) responses. Here, we investigated the role of the co-inhibitory receptor programmed cell death-1 (PD-1) in T cell activation and CD4(+) T cell polarization towards pro-atherogenic or atheroprotective responses in mice. Mice deficient for both low density lipoprotein receptor and PD-1 (Ldlr(-/-)Pd1(-/-)) displayed striking increases in systemic CD4(+) and CD8(+) T cell activation after 9 weeks of high fat diet feeding, associated with an expansion of both pro-atherogenic IFNγ-secreting T helper 1 cells and atheroprotective Foxp3+ Tregs. Importantly, PD-1 deficiency did not affect Treg suppressive function in vitro. Notably, PD-1 deficiency exacerbated atherosclerotic lesion growth and entailed a massive infiltration of T cells in atherosclerotic lesions. In addition, aggravated hypercholesterolemia was observed in Ldlr(-/-)Pd1(-/-) mice. In conclusion, we here demonstrate that although disruption of PD-1 signaling enhances both pro- and anti-atherogenic T cell responses in Ldlr(-/-) mice, pro-inflammatory T cell activation prevails and enhances dyslipidemia, vascular inflammation and atherosclerosis. KW - nutritional deficiencies KW - atherosclerosis KW - spleen KW - aorta KW - diet KW - cytotoxic T cells KW - regulatory T cells KW - T cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119823 SN - 1932-6203 VL - 9 IS - 4 ER -