TY - THES A1 - Karl, Veronika T1 - Augmented Lagrangian Methods for State Constrained Optimal Control Problems T1 - Augmentierte Lagrange-Verfahren für zustandsbeschränkte Optimalsteuerungsprobleme N2 - This thesis is concerned with the solution of control and state constrained optimal control problems, which are governed by elliptic partial differential equations. Problems of this type are challenging since they suffer from the low regularity of the multiplier corresponding to the state constraint. Applying an augmented Lagrangian method we overcome these difficulties by working with multiplier approximations in $L^2(\Omega)$. For each problem class, we introduce the solution algorithm, carry out a thoroughly convergence analysis and illustrate our theoretical findings with numerical examples. The thesis is divided into two parts. The first part focuses on classical PDE constrained optimal control problems. We start by studying linear-quadratic objective functionals, which include the standard tracking type term and an additional regularization term as well as the case, where the regularization term is replaced by an $L^1(\Omega)$-norm term, which makes the problem ill-posed. We deepen our study of the augmented Lagrangian algorithm by examining the more complicated class of optimal control problems that are governed by a semilinear partial differential equation. The second part investigates the broader class of multi-player control problems. While the examination of jointly convex generalized Nash equilibrium problems (GNEP) is a simple extension of the linear elliptic optimal control case, the complexity is increased significantly for pure GNEPs. The existence of solutions of jointly convex GNEPs is well-studied. However, solution algorithms may suffer from non-uniqueness of solutions. Therefore, the last part of this thesis is devoted to the analysis of the uniqueness of normalized equilibria. N2 - Die vorliegende Arbeit beschäftigt sich mit der Lösung von kontroll- und zustandsbeschränkten Optimalsteuerungsproblemen mit elliptischen partiellen Differentialgleichungen als Nebenbedingungen. Da die zur Zustandsbeschränkung zugehörigen Multiplikatoren nur eine niedrige Regularität aufweisen, sind Probleme dieses Typs besonders anspruchsvoll. Zur Lösung dieser Problemklasse wird ein augmentiertes Lagrange-Verfahren angewandt, das Annäherungen der Multiplikatoren in $L^2(\Omega)$ verwendet. Für jede Problemklasse erfolgt eine Präsentation des Lösungsalgorithmus, eine sorgfältige Konvergenzanalysis sowie eine Veranschaulichung der theoretischen Ergebnisse durch numerische Beispiele. Die Arbeit ist in zwei verschiedene Themenbereiche gegliedert. Der erste Teil widmet sich klassischen Optimalsteuerungsproblemen. Dabei wird zuerst der linear-quadratische und somit konvexe Fall untersucht. Hier setzt sich das Kostenfunktional aus einem Tracking-Type Term sowie einem $L^2(\Omega)$-Regularisierungsterm oder einem $L^1(\Omega)$-Term zusammen. Wir erweitern unsere Analysis auf nichtkonvexe Probleme. In diesem Fall erschwert die Nichtlinearität der zugrundeliegenden partiellen Differentialgleichung die Konvergenzanalysis des zugehörigen Optimalsteuerungsproblems maßgeblich. Der zweite Teil der Arbeit nutzt die Grundlagen, die im ersten Teil erarbeitet wurden und untersucht die allgemeiner gehaltene Problemklasse der Nash-Mehrspielerprobleme. Während die Untersuchung von konvexen verallgemeinerten Nash-Gleichsgewichtsproblemen (engl.: Generalized Nash Equilibrium Problem, kurz: GNEP) mit einer für alle Spieler identischen Restriktion eine einfache Erweiterung von linear elliptischen Optimalsteuerungsproblemen darstellt, erhöht sich der Schwierigkeitsgrad für Mehrspielerprobleme ohne gemeinsame Restriktion drastisch. Die Eindeutigkeit von normalisierten Nash-Gleichgewichten ist, im Gegensatz zu deren Existenz, nicht ausreichend erforscht, was insbesondere eine Schwierigkeit für Lösungsalgorithmen darstellt. Aus diesem Grund wird im letzten Teil dieser Arbeit die Eindeutigkeit von Lösungen gesondert betrachtet. KW - Optimale Kontrolle KW - Optimierung KW - Nash-Gleichgewicht KW - optimal control KW - state constraints KW - augmented Lagrangian method KW - Elliptische Differentialgleichung KW - Optimale Steuerung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213846 ER - TY - THES A1 - Pörner, Frank T1 - Regularization Methods for Ill-Posed Optimal Control Problems T1 - Regularisierungsverfahren für schlecht gestellte Optimalsteuerungsprobleme N2 - This thesis deals with the construction and analysis of solution methods for a class of ill-posed optimal control problems involving elliptic partial differential equations as well as inequality constraints for the control and state variables. The objective functional is of tracking type, without any additional \(L^2\)-regularization terms. This makes the problem ill-posed and numerically challenging. We split this thesis in two parts. The first part deals with linear elliptic partial differential equations. In this case, the resulting solution operator of the partial differential equation is linear, making the objective functional linear-quadratic. To cope with additional control constraints we introduce and analyse an iterative regularization method based on Bregman distances. This method reduces to the proximal point method for a specific choice of the regularization functional. It turns out that this is an efficient method for the solution of ill-posed optimal control problems. We derive regularization error estimates under a regularity assumption which is a combination of a source condition and a structural assumption on the active sets. If additional state constraints are present we combine an augmented Lagrange approach with a Tikhonov regularization scheme to solve this problem. The second part deals with non-linear elliptic partial differential equations. This significantly increases the complexity of the optimal control as the associated solution operator of the partial differential equation is now non-linear. In order to regularize and solve this problem we apply a Tikhonov regularization method and analyse this problem with the help of a suitable second order condition. Regularization error estimates are again derived under a regularity assumption. These results are then extended to a sparsity promoting objective functional. N2 - Diese Arbeit beschäftigt sich mit der Konstruktion und Analyse von Lösungsverfahren für schlecht gestellte Steuerungsprobleme. Die Nebenbedingungen sind in der Form von elliptischen partiellen Differentialgleichungen, sowie Ungleichungsrestriktionen für die Steuerung und den zugehörigen Zustand gegeben. Das Zielfunktional besteht aus einem Tracking-Type-Term ohne zusätzliche \(L^2\)-Regularisierungsterme. Dies führt dazu, dass das Optimalsteuerungsproblem schlecht gestellt ist, was die numerische Berechnung einer Lösung erschwert. Diese Arbeit ist in zwei Teile aufgeteilt. Der erste Teil beschäftigt sich mit linearen elliptischen partiellen Differentialgleichungen. In diesem Fall ist der zugehörige Lösungsoperator der partiellen Differentialgleichung linear und das Zielfunktional linear-quadratisch. Um die zusätzlichen Steuerungsrestriktionen zu behandeln, betrachten wir ein iteratives Verfahren welches auf einer Regularisierung mit Bregman-Abständen basiert. Für eine spezielle Wahl des Regularisierungsfunktionals vereinfacht sich dieses Verfahren zu dem Proximal-Point-Verfahren. Die Analyse des Verfahrens zeigt, dass es ein effizientes und gut geeignetes Verfahren ist, um schlecht gestellte Optimalsteuerungsprobleme zu lösen. Mithilfe einer Regularitätsannahme werden Konvergenzraten für den Regularisierungsfehler hergeleitet. Diese Regularitätsannahme ist eine Kombination einer Source-Condition sowie einer struktuellen Annahme an die aktiven Mengen. Wenn zusätzlich Zustandsrestriktionen vorhanden sind, wird zur Lösung eine Kombination aus dem Augmented Lagrange Ansatz sowie einer Tikhonov-Regularisierung angewendet. Der zweite Teil dieser Arbeit betrachtet nicht-lineare partielle Differentialgleichungen. Dies erhöht die Komplexität des Optimalsteuerungsproblem signifikant, da der Lösungsoperator der partiellen Differentialgleichung nun nicht-linear ist. Zur Lösung wird eine Tikhonov-Regularisierung betrachtet. Mithilfe einer geeigneten Bedingung zweiter Ordnung wird dieses Verfahren analysiert. Auch hier werden Konvergenzraten mithilfe einer Regularitätsannahme bestimmt. Anschließend werden diese Methoden auf ein Funktional mit einem zusätzlichen \(L^1\)-Term angewendet. N2 - Ill-posed optimization problems appear in a wide range of mathematical applications, and their numerical solution requires the use of appropriate regularization techniques. In order to understand these techniques, a thorough analysis is inevitable. The main subject of this book are quadratic optimal control problems subject to elliptic linear or semi-linear partial differential equations. Depending on the structure of the differential equation, different regularization techniques are employed, and their analysis leads to novel results such as rate of convergence estimates. KW - Optimale Steuerung KW - Regularisierung KW - Elliptische Differentialgleichung KW - optimal control KW - partial differential equation KW - Bregman distance KW - regularization KW - error estimate Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163153 SN - 978-3-95826-086-3 (Print) SN - 978-3-95826-087-0 (Online) N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-086-3, 26,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Wurst, Jan-Eric T1 - Hp-Finite Elements for PDE-Constrained Optimization N2 - Diese Arbeit behandelt die hp-Finite Elemente Methode (FEM) für linear quadratische Optimal-steuerungsprobleme. Dabei soll ein Zielfunktional, welches die Entfernung zu einem angestrebten Zustand und hohe Steuerungskosten (als Regularisierung) bestraft, unter der Nebenbedingung einer elliptischen partiellen Differentialgleichung minimiert werden. Bei der Anwesenheit von Steuerungsbeschränkungen können die notwendigen Bedingungen erster Ordnung, die typischerweise für numerische Lösungsverfahren genutzt werden, als halbglatte Projektionsformel formuliert werden. Folglich sind optimale Lösungen oftmals auch nicht-glatt. Die Technik der hp-Diskretisierung berücksichtigt diese Tatsache und approximiert raue Funktionen auf feinen Gittern, während Elemente höherer Ordnung auf Gebieten verwendet werden, auf denen die Lösung glatt ist. Die erste Leistung dieser Arbeit ist die erfolgreiche Anwendung der hp-FEM auf zwei verwandte Problemklassen: Neumann- und Interface-Steuerungsprobleme. Diese werden zunächst mit entsprechenden a-priori Verfeinerungsstrategien gelöst, mit der randkonzentrierten (bc) FEM oder interface konzentrierten (ic) FEM. Diese Strategien generieren Gitter, die stark in Richtung des Randes beziehungsweise des Interfaces verfeinert werden. Um für beide Techniken eine algebraische Reduktion des Approximationsfehlers zu beweisen, wird eine elementweise interpolierende Funktion konstruiert. Außerdem werden die lokale und globale Regularität von Lösungen behandelt, weil sie entscheidend für die Konvergenzgeschwindigkeit ist. Da die bc- und ic- FEM kleine Polynomgrade für Elemente verwenden, die den Rand beziehungsweise das Interface berühren, können eine neue L2- und L∞-Fehlerabschätzung hergeleitet werden. Letztere bildet die Grundlage für eine a-priori Strategie zum Aufdatieren des Regularisierungsparameters im Zielfunktional, um Probleme mit bang-bang Charakter zu lösen. Zudem wird die herkömmliche hp-Idee, die daraus besteht das Gitter geometrisch in Richtung der Ecken des Gebiets abzustufen, auf die Lösung von Optimalsteuerungsproblemen übertragen (vc-FEM). Es gelingt, Regularität in abzählbar normierten Räumen für die Variablen des gekoppelten Optimalitätssystems zu zeigen. Hieraus resultiert die exponentielle Konvergenz im Bezug auf die Anzahl der Freiheitsgrade. Die zweite Leistung dieser Arbeit ist die Entwicklung einer völlig adaptiven hp-Innere-Punkte-Methode, die Probleme mit verteilter oder Neumann Steuerung lösen kann. Das zugrundeliegende Barriereproblem besitzt ein nichtlineares Optimilitätssystem, das eine numerische Herausforderung beinhaltet: die stabile Berechnung von Integralen über Funktionen mit möglichen Singularitäten in Elementen höherer Ordnung. Dieses Problem wird dadurch gelöst, dass die Steuerung an den Integrationspunkten überwacht wird. Die Zulässigkeit an diesen Punkten wird durch einen Glättungsschritt garantiert. In dieser Arbeit werden sowohl die Konvergenz eines Innere-Punkte-Verfahrens mit Glättungsschritt als auch a-posteriori Schranken für den Diskretisierungsfehler gezeigt. Dies führt zu einem adaptiven Lösungsalgorithmus, dessen Gitterverfeinerung auf der Entwicklung der Lösung in eine Legendre Reihe basiert. Hierbei dient das Abklingverhalten der Koeffizienten als Glattheitsindikator und wird für die Entscheidung zwischen h- und p-Verfeinerung herangezogen. N2 - This thesis deals with the hp-finite element method (FEM) for linear quadratic optimal control problems. Here, a tracking type functional with control costs as regularization shall be minimized subject to an elliptic partial differential equation. In the presence of control constraints, the first order necessary conditions, which are typically used to find optimal solutions numerically, can be formulated as a semi-smooth projection formula. Consequently, optimal solutions may be non-smooth as well. The hp-discretization technique considers this fact and approximates rough functions on fine meshes while using higher order finite elements on domains where the solution is smooth. The first main achievement of this thesis is the successful application of hp-FEM to two related problem classes: Neumann boundary and interface control problems. They are solved with an a-priori refinement strategy called boundary concentrated (bc) FEM and interface concentrated (ic) FEM, respectively. These strategies generate grids that are heavily refined towards the boundary or interface. We construct an elementwise interpolant that allows to prove algebraic decay of the approximation error for both techniques. Additionally, a detailed analysis of global and local regularity of solutions, which is critical for the speed of convergence, is included. Since the bc- and ic-FEM retain small polynomial degrees for elements touching the boundary and interface, respectively, we are able to deduce novel error estimates in the L2- and L∞-norm. The latter allows an a-priori strategy for updating the regularization parameter in the objective functional to solve bang-bang problems. Furthermore, we apply the traditional idea of the hp-FEM, i.e., grading the mesh geometrically towards vertices of the domain, for solving optimal control problems (vc-FEM). In doing so, we obtain exponential convergence with respect to the number of unknowns. This is proved with a regularity result in countably normed spaces for the variables of the coupled optimality system. The second main achievement of this thesis is the development of a fully adaptive hp-interior point method that can solve problems with distributed or Neumann control. The underlying barrier problem yields a non-linear optimality system, which poses a numerical challenge: the numerically stable evaluation of integrals over possibly singular functions in higher order elements. We successfully overcome this difficulty by monitoring the control variable at the integration points and enforcing feasibility in an additional smoothing step. In this work, we prove convergence of an interior point method with smoothing step and derive a-posteriori error estimators. The adaptive mesh refinement is based on the expansion of the solution in a Legendre series. The decay of the coefficients serves as an indicator for smoothness that guides between h- and p-refinement. KW - Finite-Elemente-Methode KW - Optimale Kontrolle KW - Elliptische Differentialgleichung KW - finite elements KW - optimal control KW - higher order methods KW - partial differetial equations Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115027 SN - 978-3-95826-024-5 (print) SN - 978-3-95826-025-2 (online) PB - Würzburg University Press CY - Würzburg ER - TY - THES A1 - Winkler, Ralf T1 - Schwache Randwertprobleme von Systemen elliptischen Charakters auf konischen Gebieten T1 - Weak boundary value problems of linear elliptic systems on conical domains N2 - In der vorliegenden Arbeit werden lineare Systeme elliptischer partieller Differentialgleichungen in schwacher Formulierung auf konischen Gebieten untersucht. Auf einem zunächst unbeschränkten Kegelgebiet betrachten wir den Fall beschränkter und nur von den Winkelvariablen abhängiger Koeffizientenfunktionen. Die durch selbige definierte Bilinearform genüge einer Gårdingschen Ungleichung. In gewichteten Sobolevräumen werden Existenz- und Eindeutigkeitsfragen geklärt, wobei das Problem mittels Fouriertransformation auf eine von einem komplexen Parameter abhängige Familie T(·) von Fredholmoperatoren zurückgeführt wird. Unter Anwendung des Residuenkalküls gewinnen wir eine Darstellung der Lösung in Form einer Zerlegung in einen glatten Anteil einerseits sowie eine endliche Summe von Singulärfunktionen andererseits. Durch Abschneidetechniken werden die gewonnenen Erkenntnisse auf den Fall schwach formulierter elliptischer Systeme auf beschränkten Kegelgebieten unter Formulierung in gewöhnlichen, nicht-gewichteten Sobolevräumen angewendet. Die für Regularitätsfragen maßgeblichen Eigenwerte der Operatorfunktion T mit minimalem positiven Imaginärteil werden im letzten Kapitel der Arbeit am Beispiel der ebenen elastischen Gleichungen numerisch bestimmt. N2 - In the present PhD thesis we investigate systems of linear partial elliptic equations in weak formulation on conical domains. For an unbounded cone, first, we study the case of bounded and radially constant coefficient functions. The so defined bilinear form is supposed to satisfy a (local) Gårding inequality. In weighted Sobolev spaces we study questions of existence and uniqueness of solutions. In this context the problem is Fourier-transformed onto a set of smaller problems, represented by Fredholm operators T(·) that holomorphically depend on a complex parameter. Via the residual theorem we yield a decomposition of the solution into a regular part and a finite sum of singular functions. Using cut-off techniques we are able to transfer the preceeding results onto the case of weak formulated linear elliptic systems on bounded cones under restriction to usual, non weighted Sobolev spaces. In the last chapter, the eigenvalues of T with minimal positive imaginary part, which are responsible for regularity properties, are numeriaclly determined for the example of the plane Elastic Equations. KW - Elliptische Differentialgleichung KW - Lineare Funktionalanalysis KW - Funktionentheorie KW - Numerische Mathematik KW - Kegelgebiet KW - unstetige Koeffizientenfunktionen KW - gewichtete Sobolevräume KW - Singulärfunktionen KW - conical domain KW - discontinuous coefficient functions KW - weighted Sobolev spaces KW - singular functions Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34544 ER -