TY - THES A1 - Sibilski, Claudia T1 - Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling T1 - Identifizierung und Charakterisierung der neuartigen mKSR1-Phosphorylierungsstelle Tyr728 und deren Rolle in der MAPK-Signalkaskade N2 - In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses. N2 - KSR1 fungiert bei Säugetieren als zentrales Gerüstprotein, welches die Anordnung von RAF/MEK/ERK-Komplexen koordiniert und die intrazelluläre Signalweiterleitung nach extrazellulärer Stimulation reguliert. Eine abweichende Aktivierung des entsprechenden MAPK-Signalwegs wurde mit vielen humanen Krebsformen und einigen Entwicklungsstörungen in Verbindung gebracht. Der Mechanismus der KSR1-Regulierung ist hochgradig komplex und involviert mehrfach Schritte der Phosphorylierung/Dephosphorylierung. In der vorliegenden Studie wurden etliche neue in-vivo-Phosphorylierungsstellen in mKSR1 mittels massenspektrometrischer Analyse entdeckt. Neben anderen wurde Tyr728 als besonderer regulatorischer Rest identifiziert, welcher durch LCK, einem Mitglied der Src-Kinase-Familie, phosphoryliert wird. Um zu verstehen wie die Phosphorylierung von Tyr728 die Funktion von KSR1 innerhalb der Signalweiterleitung und zellulärer Prozesse regulieren könnte, wurden strukturelle Modellierungen und biochemische Untersuchungen in diese Arbeit integriert. Die Computermodellierung der mKSR1(KD)-Proteinstruktur zeigte starke Wasserstoff- brückenbindungen zwischen Phospho-Tyr728 und den Resten in der Umgebung von Arg649 auf. Dieses Muster war auffällig verändert, wenn Tyr728 nicht phosphoryliert oder substituiert war. Wie anhand biochemischer Analyse untermauert wurde, könnte Arg649 für phospho-Tyr728 als Hauptankerpunkt dienen, um interne Strukturen in KSR1 zu stabilisieren. In Übereinstimmung mit den Ergebnissen der Proteinmodellierung enthüllten die Mutationsstudien, dass die Substitution von Tyr728 mit Phenylalanin zu einer weniger kompakten Interaktion zwischen KSR1 und MEK, einer erleichterten KSR1/B-RAF-Bindung und einer ansteigenden Phosphorylierung von MEK im Komplex mit KSR1 führt. Anhand dieser Erkenntnisse kann man rückschließen, dass Phospho-Tyr728 in die Verstärkung der Interaktionen innerhalb der KSR1/MEK-Grenzfläche und in die Regulierung der Phosphorylierung von KSR1-gebundenem MEK durch entweder RAF- oder KSR1-Kinasen involviert ist. Neben Tyr728 wurde Ser722 als eine neuartige regulatorische Phosphorylierungsstelle identifiziert. Aminosäureaustausche an der betreffenden Position demonstrierten, dass Ser722 die Phosphorylierung von KSR1-gebundenem MEK reguliert ohne die KSR1/MEK-Bindung selbst zu beeinträchtigen. Bedingt durch seine Lokalisierung könnte Ser722 folglich die katalytische Aktivität von KSR1 kontrollieren, indem es den Zugang des Substrates (möglicherweise MEK) zur aktiven Seite der KSR1-Kinase behindert. Zusammen mit Ser722 könnte phosphoryliertes Tyr728 ferner die Kinaseaktivität von KSR1 positiv beeinflussen, infolge von dessen Nähe zur Aktivierungs- und katalytischen Schleife in der KSR1(KD). Wie mittels Strukturmodellierung offengelegt wurde, bildet Phospho-Tyr728 eine Wasserstoffbrücke mit dem hochgradig konservierten Lys685 aus. Folglich hat Phospho-Tyr728 einen stabilisierenden Effekt auf interne Strukturen, welche in die katalytische Reaktion involviert sind, und erleichtert möglicherweise den Phosphattransfer innerhalb der katalytischen Spalte in KSR1. In Anbetracht dieser Fakten scheint es sehr wahrscheinlich, dass die LCK-abhängige Phosphorylierung von Tyr728 eine äußerst wichtige Rolle in der Regulierung der katalytischen Aktivität von KSR1 spielt. Die Ergebnisse der Fraktionierungs- und Morphologieanalysen enthüllten, dass KSR1 für die Phosphorylierung an Tyr728 LCK zum Zytoskelett rekrutiert, was darauf hindeutet, dass dieser Rest die Dynamik des Zytoskeletts und folglich Zellmotilität regulieren könnte. Darüber hinaus ist die Phosphorylierung von Tyr728 in die Regulierung der Zellproliferation involviert, wie anhand einer bedeutend reduzierten Populationsverdopplungszeit von KSR1-Y728F-Zellen im Vergleich zu Zellen, welche wildtypisches KSR1 exprimieren, gezeigt wurde. Zusammenfassend lässt sich sagen, dass die Tyrosin-Phosphorylierung in KSR1 eine neue Verknüpfung zwischen Kinasen der Src-Familie und der MAPK-Signalwirkung enthüllt. Tyr728, die neuartige regulatorische Phosphorylierungsstelle in Maus-KSR1, könnte den Übergang zwischen der Gerüst- und der katalytischen Funktion von KSR1 koordinieren und damit als Kontrollpunkt dienen, um zelluläre Reaktionen fein abzustimmen. KW - MAP-Kinase KW - Signaltransduktion KW - Regulation KW - tyrosine phosphorylation KW - KSR1 KW - LCK KW - MAPK KW - phosphorylation KW - signaling Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114672 ER - TY - THES A1 - Gromova, Kira V. T1 - Visualization of the Smad direct signaling response to Bone Morphogenetic Protein 4 activation with FRET-based biosensors T1 - Visualisierung der Smad-vermittelten Signaltransduktion nach Aktivierung mit "Bone Morphogenetic Protein" 4 mittels FRET-basierter Biosensoren N2 - The Transforming Growth Factor (TGF) superfamily of cytokines and their serine/threonine kinase receptors play an important role in the regulation of cell division, differentiation, adhesion, migration, organization, and death. Smad proteins are the major intracellular signal transducers for the TGF receptor superfamily that mediate the signal from the membrane into the nucleus. Bone Morphogenetic Protein-4 (BMP-4) is a representative of the TGF superfamily, which regulates the formation of teeth, limbs and bone, and also plays a role in fracture repair. Binding of BMP-4 to its receptor stimulates phosphorylation of Smad1, which subsequently recruits Smad4. A hetero-oligomeric complex consisting of Smad1 and Smad4 then translocates into the nucleus and regulates transcription of target genes by interacting with transcription factors. Although the individual steps of the signaling cascade from the receptor to the nucleus have been identified, the exact kinetics and the rate limiting step(s) have remained elusive. Standard biochemical techniques are not suitable for resolving these issues, as they do not offer sufficiently high sensitivity and temporal resolution. In this study, advanced optical techniques were used for direct visualization of Smad signaling in live mammalian cells. Novel fluorescent biosensors were developed by fusing cyan and yellow fluorescent proteins to the signaling molecules Smad1 and Smad4. By measuring Fluorescence Resonance Energy Transfer (FRET) between the two fluorescent proteins, the kinetics of BMP/Smad signaling was unraveled. A rate-limiting delay of 2 - 5 minutes occurred between BMP receptor stimulation and Smad1 activation. A similar delay was observed in the complex formation between Smad1 and Smad4. Further experimentation indicated that the delay is dependent on the Mad homology 1 (MH1) domain of Smad1. These results give new insights into the dynamics of the BMP receptor – Smad1/4 signaling process and provide a new tool for studying Smads and for testing inhibitory drugs. N2 - Die Transforming Growth Factor" (TGF)-Superfamilie der Cytokine und ihrer Serin/Threonin-Kinase-Rezeptoren spielt eine bedeutende Rolle bei der Regulierung der Zellteilung, -differenzierung, -adhäsion, -migration, -organisation, und beim Zelltod. Die Smad-Proteine sind die wichtigsten intrazellulären Signalüberträger für die TGF-Rezeptor-Familie, da sie das Signal von der Zellmembran zum Kern übermitteln. Das ,,Bone Morphogenetic Protein4" (BMP-4) ist ein Vertreter der TGF-Familie, der die Bildung von Zähnen, Gliedmaßen und Knochen reguliert und darüber hinaus eine Rolle bei der Frakturheilung spielt. Das Binden von BMP-4 an seinen Rezeptor stimuliert die Phosphorylierung von Smad1, welches in der Folge Smad4 rekrutiert. Ein hetero-oligomerer Komplex bestehend aus Smad1 und Smad4 verlagert sich dann in den Zellkern, wo er durch Interaktion mit Transkriptionsfaktoren die Transkription von Zielgenen reguliert. Obwohl die einzelnen Schritte der Signalkaskade vom Rezeptor bis in den Zellkern bereits identifiziert wurden, blieben die Kinetik und die geschwindigkeitsbegrenzenden Schritte bisher unbekannt. Gängige biochemische Methoden eignen sich nicht um diese Fragen zu lösen, da sie nicht über ausreichende Empfindlichkeit und zeitliches Auflösungsvermögen verfügen. In der vorliegenden Arbeit wurden hochentwickelte optische Techniken angewandt, um die Smad-vermittelte Signaltransduktion direkt in lebenden Zellen sichtbar zu machen. Neue fluoreszierende Biosensoren wurden konstruiert, indem gelb- und cyan-fluoreszierende Proteine mit den Signalmoleküle Smad1 und Smad4 fusioniert wurden. Durch Messung des "Fluorescent Resonance Energy Transfer" (FRET) zwischen den zwei fluoreszierenden Proteinen konnte die Kinetik der BMP-Smad-Signalkaskade bestimmt werden. Zwischen der Stimulation des Rezeptors und der Aktivierung von Smad1 trat eine geschwindigkeitsbegrenzende Verzögerung von 2-5 Minuten auf. Eine ähnliche Verzögerung wurde bei der Bildung des Komplexes aus Smad1 und Smad4 beobachtet. Weitere Experimente zeigten, dass die Verzögerung von der Mad-Homologie-Domäne 1 (MH1) von Smad1 abhängt. Die Ergebnisse dieser Arbeit geben neue Einblicke in die Dynamik der BMP-Rezeptor-Smad1/4 Signaltransduktion und stellen neue Werkzeuge zur Untersuchung von Smads und zur Austestung inhibitorischer Wirkstoffe zur Verfügung. KW - FRET KW - Mikroskopie KW - Signaltransduktion KW - Smad KW - BMP KW - FRET KW - microscopy KW - signaling KW - Smad KW - bone morphogenetic protein KW - fluorescent protein Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25855 ER - TY - THES A1 - Spiliotis, Markus T1 - Untersuchungen zur in vitro Kultivierung und Charakterisierung von MAP-Kinase-Kaskade-Komponenten des Fuchsbandwurmes Echinococcus multilocularis T1 - Echinococcus multilocularis: in vitro cultivation and characterisation of MAP kinase cascade components N2 - Es wird angenommen, dass die invasiven Stadien parasitärer Helminthen zur Organfindung und zur Weiterentwicklung auf die Sensierung spezifischer Wirts-Signale angewiesen sind, wobei die molekulare Natur dieser Signale bislang weitgehend ungeklärt ist. Vorangegangene Untersuchungen am Fuchsbandwurm Echinococcus multilocularis, dem Erreger der alveolären Echinokokkose, hatten bereits ergeben, dass dessen Metacestoden-Larvenstadium zur Weiterentwicklung kleine, lösliche Wirtsmoleküle benötigt. In der vorliegenden Arbeit wurde erstmals ein axenisches (Wirtszell-freies) Kultursystem für das Metacestoden-Stadium entwickelt, mittels dessen sich diese Fragestellungen in vitro angehen lassen. Mit Hilfe dieses Kultursystems konnte in der vorliegenden Arbeit gezeigt werden, dass die drei Wirts-Hormone/Zytokine, Insulin, epidermal growth factor (EGF) und bone morphogeneic protein 2 (BMP2), einen Einfluss auf die Proliferation und die Differenzierung von E. multilocularis haben. Während für Insulin und EGF Wachstums-stimulierende Effekte gezeigt werden konnten, förderte BMP2 die Differenzierung des Metacestoden zum nächsten Larvenstadium, dem Protoscolex. In Modellorganismen wie Säugern, Drosophila und Caenorhabditis elegans verlaufen die durch Insulin- und EGF-ähnlichen Zytokine induzierten Signalmechanismen über die sogenannte mitogen activated protein (MAP)-Kinase-Kaskade. Um zu untersuchen, ob die externe Zugabe von Wirts-Insulin bzw. -EGF in einer Stimulierung der MAPK-Kaskade des Parasiten führt, wurden in dieser Arbeit zunächst die Komponenten dieses Signalweges bei E. multilocularis auf molekulargenetischer und biochemischer Ebene charakterisiert. Die Arbeiten umfassten Studien zu kleinen GTPasen des Parasiten (EmRas, EmRap1, EmRap2, EmRal), zu einem Orthologen der Kinase Raf (EmRaf), sowie Orthologen der Kinasen MEK (EmMKK) und ERK (EmERK). Es konnte gezeigt werden, dass diese Faktoren in E. multilocularis Teil einer MAP-Kinase-Kaskade sind. Zudem wurde nachgewiesen, dass diese Faktoren stromabwärts eines EGF-Rezeptor-Orthologen (EmER) des Parasiten fungieren, welches ebenfalls in der vorliegenden Arbeit analysiert wurde. Damit wurden die Voraussetzungen geschaffen, den Einfluss exogen zugegebenen Insulins bzw. EGFs auf die Aktivierung der MAP-Kinase-Kaskade im Parasiten zu untersuchen. Erste Analysen zeigten bereits, dass die zentrale Komponente dieser Kaskade, EmERK, durch die genannten Wirts-Zytokine aktiviert wird. Dies legt nahe, dass Wirt-Parasit-Kommunikationsmechanismen über evolutionsgeschichtlich konservierte Signalsysteme eine wichtige Rolle im Infektionsgeschehen der alveolären Echinokokkose spielen. Aufbauend auf dem axenischen Kultursystem ist es in dieser Arbeit auch erstmals gelungen, Primärzellkulturen für E. multilocularis anzulegen und die Parasitenzellen zur in vitro Neubildung von Metacestoden-Vesikeln anzuregen. Erste Experimente zur genetischen Manipulation dieser Primärzellen konnten erfolgreich durchgeführt werden. Aufbauend auf der hier vorgestellten Methodik sollte es in künftigen Untersuchungen möglich sein, stabil transfizierte Echinococcus-Zellen zu generieren und diese zur Herstellung vollständig transgener Parasiten-Stadien zu nutzen. Dies würde die zur Untersuchung der E. multilocularis-Entwicklung und der Wirt-Parasit-Interaktionsmechanismen bei einer Infektion zur Verfügung stehenden Methoden entscheidend erweitern und könnte u.a. zur weiteren biochemischen Analyse der in dieser Arbeit dargestellten Signalmechanismen des Parasiten herangezogen werden. N2 - It is assumed that the invasive stages of parasitary helminths are reliant on the sensing of specific host signals for organ targeting and development. The molecular nature of these signals is still mostly unsettled. Previous studies on the fox tapeworm Echinococcus multilocularis, the causative organism of alveolar echinococcosis showed that the metacestode larval stage requires small, soluble host molecules to develop further. For the first time, in this study an axenic (without host cells) culture system for the metacestode stage was developed which allows to address these questions in vitro. Using this culture system it could be shown that the three host hormomes/zytokines, insulin, epidermal growth factor (EGF) and bone morphogeneic protein 2 (BMP2) have influence on proliferation and differentiation of E. multilocularis. While insulin and EGF had growth-stimulating effects, BMP2 results in metacestode differentiation to the next larval stage, the protoscolex. In model organisms such as mammals, Drosophila und Caenorhabditis elegans the signals induced by insulin and EGF-related zytokines are transferred by the so-called mitogen activated protein (MAP) kinase cascade. In order to determine whether external addition of host insuline or host EGF leads to a stimulation of the MAPK cascade of the parasite, initially the components of the signal path of E. multilocularis were characterized on the moleculargenetic and biochemical level. The research comprised studies on small GTPases of the parasite (EmRas, EmRap1, EmRap2, EmRal) and an orthologue of the Raf Kinase (EmRaf) as well as orthologues of the MEK kinase (EmMKK) and ERK kinase (EmERK). It could be shown that the mentioned factors are part of a MAP kinase cascade in E. multilocularis. Furthermore it could be demonstrated that these factors act downstream of an EGF-receptor orthologue (EmER) of the parasite, which was also analysed in this study. Thereby a base was provided to investigate the influence of exogenic added insulin or EGF on the activation of the MAP kinase cascade in the parasite.First analyses showed that the mentioned host cytokines activate EmERK, the central component of this cascade. This suggests that host-parasite communication via evolutionary conserved signal systems play an important role in the infection scenario of the alveolar echinococcosis. Based on the axenic culture system, for the first time primary cells for E. multilocularis could be cultured and in vitro regeneration of metacestode vesicles could be excited in the parasite cells. First experiments on genetic manipulation on the primary cells were effected successfully. On this basis it should be possible to generate stable transfected Echinococcus cells and use these to generate completely transgenic parasite stages in future studies. This would be a critical extension of the set of methods available for research of the development of E. multilocularis and the host-parasite interaction mechanisms in an infection and could be drawn on for further biochemical analyses of the signal mechanisms of the parasites presented in this study. KW - Fuchsbandwurm KW - MAP-Kinase KW - Echinococcus KW - Fuchsbandwurm KW - in vitro Kultivierung KW - MAP-Kinase KW - EGF KW - Echinococcus KW - tapeworm KW - in vitro cultivation KW - Map kinase KW - signaling Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19385 ER -