TY - JOUR A1 - Nickl, Vera A1 - Eck, Juliana A1 - Goedert, Nicolas A1 - Hübner, Julian A1 - Nerreter, Thomas A1 - Hagemann, Carsten A1 - Ernestus, Ralf-Ingo A1 - Schulz, Tim A1 - Nickl, Robert Carl A1 - Keßler, Almuth Friederike A1 - Löhr, Mario A1 - Rosenwald, Andreas A1 - Breun, Maria A1 - Monoranu, Camelia Maria T1 - Characterization and optimization of the tumor microenvironment in patient-derived organotypic slices and organoid models of glioblastoma JF - Cancers N2 - While glioblastoma (GBM) is still challenging to treat, novel immunotherapeutic approaches have shown promising effects in preclinical settings. However, their clinical breakthrough is hampered by complex interactions of GBM with the tumor microenvironment (TME). Here, we present an analysis of TME composition in a patient-derived organoid model (PDO) as well as in organotypic slice cultures (OSC). To obtain a more realistic model for immunotherapeutic testing, we introduce an enhanced PDO model. We manufactured PDOs and OSCs from fresh tissue of GBM patients and analyzed the TME. Enhanced PDOs (ePDOs) were obtained via co-culture with PBMCs (peripheral blood mononuclear cells) and compared to normal PDOs (nPDOs) and PT (primary tissue). At first, we showed that TME was not sustained in PDOs after a short time of culture. In contrast, TME was largely maintained in OSCs. Unfortunately, OSCs can only be cultured for up to 9 days. Thus, we enhanced the TME in PDOs by co-culturing PDOs and PBMCs from healthy donors. These cellular TME patterns could be preserved until day 21. The ePDO approach could mirror the interaction of GBM, TME and immunotherapeutic agents and may consequently represent a realistic model for individual immunotherapeutic drug testing in the future. KW - glioblastoma KW - organoids KW - slice culture KW - tumormicroenvironment Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319249 SN - 2072-6694 VL - 15 IS - 10 ER -