TY - THES A1 - Elias dos Santos, Graciely T1 - Spin-Orbit Torques and Galvanomagnetic Effects Generated by the 3D Topological Insulator HgTe T1 - Spin-Orbit Torques und galvanomagnetische Effekte, erzeugt durch den 3D-topologischen Isolator HgTe N2 - In meiner Dissertation beschäftigte ich mich mit der Frage, ob der 3D topologische Isolator Quecksilbertellurid (3D TI HgTe) ein geeignetes Material für Spintronik-Anwendungen ist. Wir untersuchten Spin-Bahn-Drehmomente, die auf Elektronen beim Tunneln zwischen HgTe und einem angrenzenden Ferromagneten (Permalloy) einwirken. Zunächst setzten wir die Methode der Ferromagnetresonanz (SOT-FMR) für diese Untersuchungen ein. Im ersten Teil der Dissertation werden die Leser in die mathematische Beschreibung von Spin- Bahn-Drehmomenten in einem Hybridsystem bestehend aus topologischem Isolator (TI) und Ferromagnet (FM) eingeführt. Des Weiteren werden die Probenherstellung und der Messaufbau für SOT-FMR Messungen besprochen. Unsere SOT-FMR Messungen ergaben, dass bei tiefen Temperaturen (T = 4.2 K) die Normalkomponente (bezogen auf der TI-Oberfläche) des Drehmoments groß war. Bei Raumtemperatur konnten im Signal beide Komponenten (parallel und normal zur TI-Oberfläche) beobachtet werden. Aus der Symmetrie der Mixing-Spannung (Abbildungen 3.14 und 3.15) schlossen wir, dass 3D TI HgTe ein Spin-Bahn-Drehmoment auf das Elektronensystem des Permalloys überträgt. Unsere Untersuchungen zeigten darüber hinaus, dass die Effizienz dieser Übertragung mit der anderer vorhandener topologischen Isolatoren vergleichbar ist (siehe Abb. 3.17). Abschließend wurden parasitäre Effekte bei der Abschätzung des Spin-Bahn-Drehmoments bzw. andere Interpretationen des Messsignals und seiner Komponenten (z.B., Thermospannungen) ausführlich diskutiert. Obwohl die hier gezeigten Ergebnisse vermehrt darauf hinweisen, dass der 3D TI HgTe möglicherweise effizient für die Anwendung von Spin-Drehmomenten in angrezenden Ferromagneten ist [1], wird dem Leser weiderholt klargemacht, dass parasitäre Effekte eventuelle das korrekte Schreiben und Lesen der Information in Ferromagneten verunreignigt. Diese sollten auch bei der Interpretation von publizierten Resultaten besonders hohen Spin-Bahn-Drehmomentübertragungen in der Literatur berücksichtigt werden [1–3]. Die Nachteile der SOT-FMR-Messmethode führten zu einerWeiterentwicklung unseres Messkonzepts, bei dem der Ferromagnet durch eine Spin-Valve-Struktur ersetzt wurde. In dieser Messanordnung ist der Stromfluss durch den 3D TI im Gegensatz zu den vorangegangenen Messungen bekannt und die Widerstandsänderung der Spin-Valve-Struktur kann durch den GMR-Effekt ausgelesen werden. Die Ausrichtung der Magnetisierung des Ferromagneten in den SOT-FMR-Experimenten erforderte es, ein magnetisches Feld von bis zu 300 mT parallel zur TI-Oberfläche anzulegen. Motiviert durch diesen Umstand, untersuchten wir den Einfluss eines parallelen Magnetfelds auf den Magnetowiderstand in 3D TI HgTe. Die überraschenden Resultate dieser Messungen werden im zweiten Teil der Dissertation beschrieben. Obwohl nichtmagnetisches Quecksilbertellurid untersucht wurde, oszillierte der transversale Magnetowiderstand (Rxy) mit dem Winkel � zwischen der Magnetfeldrichtung (parallel zur Oberfläche) und der elektrischen Stromflussrichtung im topologischen Isolator. Dieser Effekt ist eine typische Eigenschaft von ferromagnetischen Materialien und wird planarer Hall-Effekt (PHE) genannt[4, 5]. Magnetowiderstands- (MR-)Oszillationen wurden ebenfalls sowohl im Längswiderstand (Rxx) und im transversalen Widerstand (Rxy) über einen weiten Bereich von magnetischen Feldstärken und Ladungsträgerdichten des topologischen Isolators beobachtet. Der PHE wurde bereits zuvor in einem anderen TI-Material (Bi2−xSbxTe3) beschrieben [6]. Als physikalischer Mechanismus wurde von den Autoren Elektronenstreuung an magnetisch polarisierten Streuzentren vorgeschlagen. Wir diskutierten sowohl diesen Erklärungsansatz als auch andere Theorievorschläge in der Literatur [7, 8] kritisch. In dieser Doktorarbeit haben wir versucht, der PHE des 3D TI HgTe durch die Asymmetrie in der Bandstruktur dieses Materials zu erklären. In k.p Bandstrukturrechnungen mit einer 6-Orbital-Basis zeigten wir, dass das Zwischenspiel von Rashba- und Dresselhaus-Spin-Bahn- Wechselwirkung mit dem magnetischen Feld parallel zur TI-Oberfläche zu einer Verformung der Fermikontur des Valenzbands von 3D TI-HgTe führt, welche ihrerseits eine Anisotropie des Leitfähigkeit bedingt. Die benötigten Magnetfeldstärken in diesem Modell waren mit bis zu 40 T jedoch etwa eine Größenordnung größer als jene in unseren Experimenten. Des Weiteren lieferte eine direkte Berechnung der Zustandsdichten für Bin k I und Bin ? I bisher keine klaren Resultate. Die komplizierte Abhängigkeit der Rashba-Spin-Bahn-Kopplung für p-leitendes HgTe [9] machte es außerdem schwierig, diesen Term in die Bandstrukturrechnung zu inkludieren. Trotz umfangreicher Bemühungen, den Ursprung der galvanomagnetischen Effekte im 3D TI HgTe zu verstehen, konnte in dieser Arbeit der Mechanismus des PHE und der MR-Oszillationen nicht eindeutig bestimmt werden. Es gelang jedoch, einige aus der Literatur bekannte Theorien für den PHE und die MR-Oszillationseffekte in topologischen Isolatoren auszuschließen. Die Herausforderung, eine vollständige theoretische Beschreibung zu entwickeln, die allen experimentellen Aspekten (PHE, Gatespannungsabhängigkeit und MR-Oszillationen) gerecht wird, bleibt weiter bestehen. Abschließend möchte die Autorin ihre Hoffnung ausdrücken, den Lesern die Komplexität der Fragestellung näher gebracht zu haben und sie in die Kunst elektrischer Messungen an topologischen Isolatoren bei angelegtem parallelem Magnetfeld initiiert zu haben. N2 - Nature shows us only the tail of the lion. But I have no doubt that the lion belongs with it even if he cannot reveal himself all at once. Albert Einstein In my dissertation, I addressed the question of whether the 3D topological insulator mercury telluride (3D TI HgTe) is a suitable material for spintronics applications. This question was addressed by investigating the SOTs generated by the 3D TI HgTe in an adjacent ferromagnet (Permalloy) by using the ferromagnetic resonance technique (SOT-FMR). In the first part of the dissertation, the reader was introduced to the mathematical description of the SOTs of a hybrid system consisting of a topological insulator (TI) and a ferromagnet (FM). Furthermore, the sample preparation and the measurement setup for the SOT-FMR measurements were discussed. Our SOT-FMR measurements showed that at low temperatures (T = 4.2 K) the out-of-plane component of the torque is dominant. At room temperature, both in-plane and out-of-plane components of the torque could be observed. From the symmetry of the mixing voltage (Figs. 3.14 and 3.15) we could conclude that the 3D TI HgTe may be efficient for the generation of spin torques in the permalloy [1]. The investigations reported here showed that the SOT efficiencies generated by the 3D TI HgTe are comparable with other existent topological insulators (see Fig. 3.17). We also discussed in detail the parasitic effects (such as thermovoltages) that can contribute to the correct interpretation of the spin torque efficiencies. Although the results reported here provide several indications that the 3D TI HgTe might be efficient in exerting spin-torques in adjacent ferromagnets [2], the reader was repeatedly made aware that parasitic effects might contaminate the correct writing and reading of the information in the ferromagnet. These effects should be taken into consideration when interpreting results in the published literature claiming high spin-orbit torque efficiencies [2–4]. The drawbacks of the SOT-FMR measurement method led to a further development of our measurement concept, in which the ferromagnet on top of the 3D TI HgTe was replaced by a spin-valve structure. In contrast with our measurements, in this measurement setup, the current flowing through the HgTe is known and changes in the spin-valve resistance can be read via the GMR effect. Moreover, the SOT-FMR experiments required the application of an in-plane magnetic field up to 300 mT to define the magnetization direction in the ferromagnet. Motivated by this fact, we investigated the influence of an in-plane magnetic field in the magnetoresistance of the 3D TI HgTe. The surprising results of these measurements are described in the second part of the dissertation. Although the TI studied here is non-magnetic, its transversal MR (Rxy) showed an oscillating behavior that depended on the angle between the in-plane magnetic field and the electrical current. This effect is a typical property of ferromagnetic materials and is called planar Hall effect (PHE) [5, 6]. Moreover, it was also shown that the PHE amplitude (Rxy) and the longitudinal resistance (Rxx) oscillate as a function of the in-plane magnetic field amplitude for a wide range of carrier densities of the topological insulator. The PHE was already described in another TI material (Bi2−xSbxTe3) [7]. The authors suggested as a possible mechanism the scattering of the electron off impurities that are polarized by an in-plane magnetic field. We critically discussed this and other theoretical proposed mechanisms existent in the literature [8, 9]. In this thesis, we attempted to explain the origin of the PHE in the 3D TI HgTe by anisotropies in the band structure of this material. The k.p calculations based on 6-orbitals were able to demonstrate that an interplay between Rashba, Dresselhaus, and in-plane magnetic field deforms the Fermi contours of the camel back band of the 3D TI HgTe, which could lead to anisotropies in its conductivity. However, the magnetic fields needed to experimentally observe this effect are as high as 40 T, i.e., one order of magnitude higher than reported in our experiments. Additionally, calculations of the DoS to assess if there is a difference in the states for Bin parallel and Bin perpendicular to the current were, so far, inconclusive. Moreover, the complicated dependence of Rashba in the p-conducting regime of HgTe [10] makes it not straightforward the inclusion of this term in the band structure calculations. Despite the extensive efforts to understand the origin of the galvanomagnetic effects in the 3D TI HgTe, we could not determine a clear mechanism for the origin of the PHE and the MR oscillations studied in this thesis. However, our work clarifies and excludes a few mechanisms reported in the literature as the origin of these effects in the 3D TI HgTe. The major challenge, which still needs to be overcome, is to find a model that simultaneously explains the PHE, the gate dependence, and the oscillations in the magnetoresistance of the 3D TI HgTe as a function of the in-plane magnetic field. To conclude, the author would like to express her hope to have brought the reader closer to the complexity of the questions addressed in this thesis and to have initiated them into the art of properly conducting electrical transport measurements on topological insulators with in-plane magnetic fields. KW - Electrical transport KW - Topologischer Isolator KW - Spintronics KW - Topological Insulators KW - Spin-Orbit-Torque Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247971 ER - TY - THES A1 - Böttcher, Jan Frederic T1 - Fate of Topological States of Matter in the Presence of External Magnetic Fields T1 - Schicksal von topologischen Zuständen in der Gegenwart von externen magnetischen Feldern N2 - The quantum Hall (QH) effect, which can be induced in a two-dimensional (2D) electron gas by an external magnetic field, paved the way for topological concepts in condensed matter physics. While the QH effect can for that reason not exist without Landau levels, there is a plethora of topological phases of matter that can exist even in the absence of a magnetic field. For instance, the quantum spin Hall (QSH), the quantum anomalous Hall (QAH), and the three-dimensional (3D) topological insulator (TI) phase are insulating phases of matter that owe their nontrivial topology to an inverted band structure. The latter results from a strong spin-orbit interaction or, generally, from strong relativistic corrections. The main objective of this thesis is to explore the fate of these preexisting topological states of matter, when they are subjected to an external magnetic field, and analyze their connection to quantum anomalies. In particular, the realization of the parity anomaly in solid state systems is discussed. Furthermore, band structure engineering, i.e., changing the quantum well thickness, the strain, and the material composition, is employed to manipulate and investigate various topological properties of the prototype TI HgTe. Like the QH phase, the QAH phase exhibits unidirectionally propagating metallic edge channels. But in contrast to the QH phase, it can exist without Landau levels. As such, the QAH phase is a condensed matter analog of the parity anomaly. We demonstrate that this connection facilitates a distinction between QH and QAH states in the presence of a magnetic field. We debunk therefore the widespread belief that these two topological phases of matter cannot be distinguished, since they are both described by a $\mathbb{Z}$ topological invariant. To be more precise, we demonstrate that the QAH topology remains encoded in a peculiar topological quantity, the spectral asymmetry, which quantifies the differences in the number of states between the conduction and valence band. Deriving the effective action of QAH insulators in magnetic fields, we show that the spectral asymmetry is thereby linked to a unique Chern-Simons term which contains the information about the QAH edge states. As a consequence, we reveal that counterpropagating QH and QAH edge states can emerge when a QAH insulator is subjected to an external magnetic field. These helical-like states exhibit exotic properties which make it possible to disentangle QH and QAH phases. Our findings are of particular importance for paramagnetic TIs in which an external magnetic field is required to induce the QAH phase. A byproduct of the band inversion is the formation of additional extrema in the valence band dispersion at large momenta (the `camelback'). We develop a numerical implementation of the $8 \times 8$ Kane model to investigate signatures of the camelback in (Hg,Mn)Te quantum wells. Varying the quantum well thickness, as well as the Mn-concentration, we show that the class of topologically nontrivial quantum wells can be subdivided into direct gap and indirect gap TIs. In direct gap TIs, we show that, in the bulk $p$-regime, pinning of the chemical potential to the camelback can cause an onset to QH plateaus at exceptionally low magnetic fields (tens of mT). In contrast, in indirect gap TIs, the camelback prevents the observation of QH plateaus in the bulk $p$-regime up to large magnetic fields (a few tesla). These findings allowed us to attribute recent experimental observations in (Hg,Mn)Te quantum wells to the camelback. Although our discussion focuses on (Hg,Mn)Te, our model should likewise apply to other topological materials which exhibit a camelback feature in their valence band dispersion. Furthermore, we employ the numerical implementation of the $8\times 8$ Kane model to explore the crossover from a 2D QSH to a 3D TI phase in strained HgTe quantum wells. The latter exhibit 2D topological surface states at their interfaces which, as we demonstrate, are very sensitive to the local symmetry of the crystal lattice and electrostatic gating. We determine the classical cyclotron frequency of surface electrons and compare our findings with experiments on strained HgTe. N2 - Der Quanten-Hall (QH) Effekt, welcher in einem zwei-dimensionalen (2D) Elektronengas durch ein externes Magnetfeld erzeugt werden kann, ebnete den Weg für topologische Konzepte in der Physik der kondensierten Materie. Während der QH Effekt aus diesem Grund nicht ohne Landau Level existieren kann, gibt es eine Vielzahl von neuartigen topologischen Phasen, die auch in der Abwesenheit von Magnetfeldern existieren können. Zum Beispiel stellen die Quanten-Spin-Hall (QSH), die Quanten-Anomale-Hall (QAH) und die drei-dimensionale (3D) topologische Isolator-Phase isolierende, topologische Phasen dar, die Ihre nicht-triviale Topologie einer invertierten Bandstruktur verdanken. Letztere wird durch eine starke Spin-Bahn Wechselwirkung, oder im Allgemeinen durch starke relativistische Korrekturen, erzeugt. Das Hauptziel dieser Thesis ist es dabei das Schicksal dieser bereits bestehenden topologischen Zustände in Magnetfeldern zu erforschen und deren Verbindungen zu Quantenanomalien aufzuzeigen. In diesem Zusammenhang werden wir insbesondere die Realisierung der Paritätsanomalie in Festkörpersystemen diskutieren. Weitergehend wenden wir Bandstruktur-Engineering an, d.h. die Veränderung der Quantentrogdicke, der Verspannung und der Materialkomposition, um die vielfältigen topologischen Eigenschaften des topologischen Isolators (TIs) HgTe zu manipulieren und zu untersuchen. Wie die QH Phase, zeichnet sich die QAH Phase durch unidirektional propagierende, metallische Randkanäle aus. Aber im Vergleich zur QH Phase, kann sie auch ohne Landau Level existieren. Die QAH Phase stellt daher ein Kondensierte-Materie-Analogon zur Paritätsanomalie dar. Wir zeigen, dass diese Verbindung es uns ermöglicht in der Gegenwart eines Magnetfelds zwischen QH und QAH Zuständen zu unterscheiden. Damit widerlegen wir den weitverbreiten Glauben, dass diese zwei topologischen Phasen nicht unterschieden werden können, da beide durch eine $\mathbb{Z}$ topologische Invariante beschrieben sind. Etwas genauer gesagt, zeigen wir, dass die QAH Topologie in einer besonderen topologischen Invarianten kodiert bleibt, der spektralen Asymmetrie. Diese quantifiziert die Differenz in der Anzahl von Zuständen in Leitungs- und Valenzbändern. Indem wir die effektive Wirkung eines QAH Isolators im Magnetfeld herleiten, zeigen wir, dass die spektrale Asymmetrie dabei mit einem einzigartigen Chern-Simons Term verbunden ist, welcher die Information über die QAH Randkanäle beinhaltet. Wenn ein QAH Isolator einem externen Magnetfeld ausgesetzt wird, kann dies zur Bildung von gegenläufigen QH und QAH Randkanälen führen. Diese helikalartigen Randzustände besitzen exotische Eigenschaften, die es uns ermöglichen QH und QAH Phasen zu unterscheiden. Unsere Ergebnisse sind insbesondere für paramagnetische TIs von Bedeutung, da für diese ein externes Magnetfeld von Nöten ist, um die QAH Phase zu induzieren. Ein Nebenprodukt der Bandinversion ist die Bildung von zusätzlichen Extrema in der Dispersion des Valenzbands bei großen Impulsen (oft auch als `Kamelrücken' bezeichnet). Wir entwickeln eine numerische Implementierung des $8 \times 8$ Kane Modells um die Signaturen des Kamelrückens in (Hg,Mn)Te Quantentrögen zu untersuchen. Indem die Quantentrogdicke und die Mn-Konzentration variiert wird, zeigen wir, dass die Klasse von topologisch nicht-trivialen Materialien weiter in direkte und indirekte TIs unterteilt werden kann. Für direkte TIs mit $p$-Ladungsträgerdichten, zeigen wir, dass die Anheftung des chemischen Potentials an den Kamelrücken zu einem Beginn von QH-Plateaus bei ungewöhnlich kleinen Magnetfeldern (zweistelliger mT-Bereich) führen kann. Im Gegensatz dazu verhindert der Kamelrücken bei indirekten TIs die Beobachtung von QH Plateaus im $p$-Bereich bis zu großen Magnetfeldern (einige Tesla). Diese Ergebnisse erlauben es uns jüngste experimentelle Beobachtungen in (Hg,Mn)Te Quantentrögen der Existenz des Kamelrückens zuzuschreiben. Obwohl sich unsere Diskussion dabei auf (Hg,Mn)Te beschränkt, sollte sich unser Modell leicht auch auf andere topologische Materialien mit einer kamelartigen Struktur im Valenzband übertragen lassen. Zusätzlich haben wir die numerische Implementierung des $8 \times 8$ Kane Modells verwendet, um den Übergang von einer 2D QSH zu einer 3D TI Phase in verspannten HgTe Quantentrögen zu untersuchen. Diese Halbleitermaterialien zeichnen sich durch 2D topologische Oberflächenzustände an Grenzflächen aus, welche, wie wir zeigen, sehr sensitiv für die lokale Kristallsymmetrie des Gitters und elektrostatische Ladung sind. Wir bestimmen die klassische Zyklotronfrequenz der Oberflächenelektronen und vergleichen diese mit experimentellen Messungen an verspannten HgTe Qunatentrögen. KW - Topologie KW - Festkörperphysik KW - Magnetfeld KW - Feldtheorie KW - Topological Insulators KW - Parity Anomaly Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220451 ER -