TY - JOUR A1 - Neagoe, Raluca A. I. A1 - Gardiner, Elizabeth E. A1 - Stegner, David A1 - Nieswandt, Bernhard A1 - Watson, Steve P. A1 - Poulter, Natalie S. T1 - Rac inhibition causes impaired GPVI signalling in human platelets through GPVI shedding and reduction in PLCγ2 phosphorylation JF - International Journal of Molecular Sciences N2 - Rac1 is a small Rho GTPase that is activated in platelets upon stimulation with various ligands, including collagen and thrombin, which are ligands for the glycoprotein VI (GPVI) receptor and the protease-activated receptors, respectively. Rac1-deficient murine platelets have impaired lamellipodia formation, aggregation, and reduced PLCγ2 activation, but not phosphorylation. The objective of our study is to investigate the role of Rac1 in GPVI-dependent human platelet activation and downstream signalling. Therefore, we used human platelets stimulated using GPVI agonists (collagen and collagen-related peptide) in the presence of the Rac1-specific inhibitor EHT1864 and analysed platelet activation, aggregation, spreading, protein phosphorylation, and GPVI clustering and shedding. We observed that in human platelets, the inhibition of Rac1 by EHT1864 had no significant effect on GPVI clustering on collagen fibres but decreased the ability of platelets to spread or aggregate in response to GPVI agonists. Additionally, in contrast to what was observed in murine Rac1-deficient platelets, EHT1864 enhanced GPVI shedding in platelets and reduced the phosphorylation levels of PLCγ2 following GPVI activation. In conclusion, Rac1 activity is required for both human and murine platelet activation in response to GPVI-ligands, but Rac1’s mode of action differs between the two species. KW - platelets KW - Rac1 KW - glycoprotein VI KW - EHT1864 KW - GPVI shedding KW - phospholipase C gamma 2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284350 SN - 1422-0067 VL - 23 IS - 7 ER - TY - JOUR A1 - Navarro, Stefano A1 - Stegner, David A1 - Nieswandt, Bernhard A1 - Heemskerk, Johan W. M. A1 - Kuijpers, Marijke J. E. T1 - Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation JF - International Journal of Molecular Sciences N2 - In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process. KW - coagulation KW - fibrin KW - glycoprotein VI KW - platelet receptors KW - spatiotemporal thrombus KW - thrombin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284219 SN - 1422-0067 VL - 23 IS - 1 ER - TY - JOUR A1 - Vogelsang, Anna A1 - Eichler, Susann A1 - Huntemann, Niklas A1 - Masanneck, Lars A1 - Böhnlein, Hannes A1 - Schüngel, Lisa A1 - Willison, Alice A1 - Loser, Karin A1 - Nieswandt, Bernhard A1 - Kehrel, Beate E. A1 - Zarbock, Alexander A1 - Göbel, Kerstin A1 - Meuth, Sven G. T1 - Platelet inhibition by low-dose acetylsalicylic acid reduces neuroinflammation in an animal model of multiple sclerosis JF - International Journal of Molecular Sciences N2 - Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4\(^+\) T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A\(_2\) were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS. KW - acetylsalicylic acid KW - experimental autoimmune encephalomyelitis KW - platelets KW - multiple sclerosis KW - thromboxane KW - glycoprotein VI KW - platelet factor 4 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284535 SN - 1422-0067 VL - 22 IS - 18 ER - TY - JOUR A1 - Navarro, Stefano A1 - Starke, Andreas A1 - Heemskerk, Johan W. M. A1 - Kuijpers, Marijke J. E. A1 - Stegner, David A1 - Nieswandt, Bernhard T1 - Targeting of a conserved epitope in mouse and human GPVI differently affects receptor function JF - International Journal of Molecular Sciences N2 - Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6\(^{tg/tg\)). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets. KW - glycoprotein VI KW - JAQ1 KW - platelet receptors KW - platelet activation KW - platelet inhibition Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286227 SN - 1422-0067 VL - 23 IS - 15 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Kraft, Peter A1 - Bieber, Michael A1 - Kollikowski, Alexander M. A1 - Schulze, Harald A1 - Nieswandt, Bernhard A1 - Pham, Mirko A1 - Stegner, David A1 - Stoll, Guido T1 - Targeting platelet GPVI plus rt-PA administration but not α2β1-mediated collagen binding protects against ischemic brain damage in mice JF - International Journal of Molecular Science N2 - Platelet collagen interactions at sites of vascular injuries predominantly involve glycoprotein VI (GPVI) and the integrin α2β1. Both proteins are primarily expressed on platelets and megakaryocytes whereas GPVI expression is also shown on endothelial and integrin α2β1 expression on epithelial cells. We recently showed that depletion of GPVI improves stroke outcome without increasing the risk of cerebral hemorrhage. Genetic variants associated with higher platelet surface integrin α2 (ITGA2) receptor levels have frequently been found to correlate with an increased risk of ischemic stroke in patients. However until now, no preclinical stroke study has addressed whether platelet integrin α2β1 contributes to the pathophysiology of ischemia/reperfusion (I/R) injury. Focal cerebral ischemia was induced in C57BL/6 and Itga2\(^{−/−}\) mice by a 60 min transient middle cerebral artery occlusion (tMCAO). Additionally, wild-type animals were pretreated with anti-GPVI antibody (JAQ1) or Fab fragments of a function blocking antibody against integrin α2β1 (LEN/B). In anti-GPVI treated animals, intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment was applied immediately prior to reperfusion. Stroke outcome, including infarct size and neurological scoring was determined on day 1 after tMCAO. We demonstrate that targeting the integrin α2β1 (pharmacologic; genetic) did neither reduce stroke size nor improve functional outcome on day 1 after tMCAO. In contrast, depletion of platelet GPVI prior to stroke was safe and effective, even when combined with rt-PA treatment. Our results underscore that GPVI, but not ITGA2, is a promising and safe target in the setting of ischemic stroke. KW - ischemic stroke KW - integrin α2 KW - glycoprotein VI KW - recombinant tissue-type plasminogen activator KW - intracranial bleeding KW - transient middle cerebral artery occlusion Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201700 SN - 1422-0067 VL - 20 IS - 8 ER -