TY - JOUR A1 - Bakirci, Ezgi A1 - Frank, Andreas A1 - Gumbel, Simon A1 - Otto, Paul F. A1 - Fürsattel, Eva A1 - Tessmer, Ingrid A1 - Schmidt, Hans‐Werner A1 - Dalton, Paul D. T1 - Melt Electrowriting of Amphiphilic Physically Crosslinked Segmented Copolymers JF - Macromolecular Chemistry and Physics N2 - Various (AB)\(_{n}\) and (ABAC)\(_{n}\) segmented copolymers with hydrophilic and hydrophobic segments are processed via melt electrowriting (MEW). Two different (AB)\(_{n}\) segmented copolymers composed of bisurea segments and hydrophobic poly(dimethyl siloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments, while the amphiphilic (ABAC)\(_{n}\) segmented copolymers consist of bisurea segments in the combination of hydrophobic PDMS segments and hydrophilic PPO-PEG-PPO segments with different ratios, are explored. All copolymer compositions are processed using the same conditions, including nozzle temperature, applied voltage, and collector distance, while changes in applied pressure and collector speed altered the fiber diameter in the range of 7 and 60 µm. All copolymers showed excellent processability with MEW, well-controlled fiber stacking, and inter-layer bonding. Notably, the surfaces of all four copolymer fibers are very smooth when visualized using scanning electron microscopy. However, the fibers show different roughness demonstrated with atomic force microscopy. The non-cytotoxic copolymers increased L929 fibroblast attachment with increasing PDMS content while the different copolymer compositions result in a spectrum of physical properties. KW - melt electrowriting KW - 3D printing KW - additive manufacturing KW - electrohydrodynamics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257572 VL - 222 IS - 22 ER - TY - THES A1 - Blum, Carina T1 - A first step to an integral biointerface design for the early phase of regeneration T1 - Ein erster Schritt zur Etablierung eines integralen biologischen Grenzflächendesigns für die frühe Phase der Regeneration N2 - The implantation of any foreign material into the body automatically starts an immune reaction that serves as the first, mandatory step to regenerate tissue. The course of this initial immune reaction decides on the fate of the implant: either the biomaterial will be integrated into the host tissue to subsequently fulfill its intended function (e.g., tissue regeneration), or it will be repelled by fibrous encapsulation that determines the implant failure. Especially neutrophils and macrophages play major roles during this inflammatory response and hence mainly decide on the biomaterial's fate. For clinically relevant tissue engineering approaches, biomaterials may be designed in shape and morphology as well as in their surface functionality to improve the healing outcome, but also to trigger stem cell responses during the subsequent tissue regeneration phase. The main focus of this thesis was to unravel the influence of scaffold characteristics, including scaffold morphology and surface functionality, on primary human innate immune cells (neutrophils and macrophages) and human mesenchymal stromal cells (hMSCs) to assess their in vitro immune response and tissue regeneration capacity, respectively. The fiber-based constructs were produced either via melt electrowriting (MEW), when the precise control over scaffold morphology was required, or via solution electrospinning (ES), when the scaffold design could be neglected. All the fiber-based scaffolds used throughout this thesis were composed of the polymer poly(ε caprolactone) (PCL). A novel strategy to model and alleviate the first direct cell contact of the immune system with a peptide-bioactived fibrous material was presented in chapter 3 by treating the material with human neutrophil elastase (HNE) to imitate the neutrophil attack. The main focus of this study was put on the effect of HNE towards an RGDS-based peptide that was immobilized on the surface of a fibrous material to improve subsequent L929 cell adhesion. The elastase efficiently degraded the peptide-functionality, as evidenced by a decreased L929 cell adhesion, since the peptide integrated a specific HNE-cleavage site (AAPV-motif). A sacrificial hydrogel coating based on primary oxidized hyaluronic acid (proxHA), which dissolved within a few days after the neutrophil attack, provided an optimal protection of the peptide-bioactivated fibrous mesh, i.e, the hydrogel alleviated the neutrophil attack and largely ensured the biomaterial's integrity. Thus, according to these results, a means to protect the biomaterial is required to overcome the neutrophil attack. Chapter 4 was based on the advancement of melt electrowriting (MEW) to improve the printing resolution of MEW scaffolds in terms of minimal inter-fiber distances and a concomitant high stacking precision. Initially, to gain a better MEW understanding, the influence of several parameters, including spinneret diameter, applied pressure, and collector velocity on mechanical properties, crystallinity, fiber diameter and fiber surface morphology was analyzed. Afterward, innovative MEW designs (e.g., box-, triangle-, round , and wall-shaped scaffolds) have been established by pushing the printing parameters to their physical limits. Further, the inter-fiber distance within a standardized box-structured scaffold was successfully reduced to 40 µm, while simultaneously a high stacking precision was maintained. In collaboration with a co-worker of my department (Tina Tylek, who performed all cell-based experiments in this study), these novel MEW scaffolds have been proven to facilitate human monocyte-derived macrophage polarization towards the regenerative M2 type in an elongation-driven manner with a more pronounced effect with decreasing pore sizes. Finally, a pro-adipogenic platform for hMSCs was developed in chapter 5 using MEW scaffolds with immobilized, complex ECM proteins (e.g., human decellularized adipose tissue (DAT), laminin (LN), and fibronectin (FN)) to test for the adipogenic differentiation potential in vitro. Within this thesis, a special short-term adipogenic induction regime enabled to more thoroughly assess the intrinsic pro-adipogenic capacity of the composite biomaterials and prevented any possible masking by the commonly used long-term application of adipogenic differentiation reagents. The scaffolds with incorporated DAT consistently showed the highest adipogenic outcome and hence provided an adipo-inductive microenvironment for hMSCs, which holds great promise for applications in soft tissue regeneration. Future studies should combine all three addressed projects in a more in vivo-related manner, comprising a co-cultivation setup of neutrophils, macrophages, and MSCs. The MEW-scaffold, particularly due to its ability to combine surface functionality and adjustable morphology, has been proven to be a successful approach for wound healing and paves the way for subsequent tissue regeneration. N2 - Die Implantation eines Biomaterials löst stets eine Immunreaktion im Körper aus, die den ersten zwingenden Schritt zur Geweberegeneration darstellt. Der Verlauf dieser anfänglichen Immunreaktion entscheidet über das Schicksal des Implantats: Entweder wird das Biomaterial in das Wirtsgewebe integriert, um anschließend seine vorgesehene Funktion (z.B. Geweberegeneration) zu erfüllen, oder aber es findet eine Abstoßungsreaktion durch Einkapselung des Implantats statt. Insbesondere Neutrophile und Makrophagen spielen für die Immunantwort eine wichtige Rolle und entscheiden daher hauptsächlich über das Schicksal des Biomaterials. Für klinisch relevante Ansätze der Gewebezüchtung können Biomaterialien sowohl in ihrer Morphologie als auch in ihrer Oberflächenfunktionalität so gestaltet werden, dass sie zum einen die Wundheilung verbessern, zum anderen auch Stammzellreaktionen während der anschließenden Geweberegenerationsphase auslösen. Der Fokus dieser Doktorarbeit lag auf der Beurteilung des Einflusses von Morphologie und Oberflächenfunktionalität fasriger Scaffolds auf die frühe Phase der Geweberegeneration. Insbesondere wurde die in vitro-Immunantwort von primären humanen Immunzellen (Neutrophile und Makrophagen) sowie die Geweberegenerationskapazität von humanen mesenchymalen Stromazellen (hMSCs) untersucht. Die hierfür verwendeten faserbasierten Poly(ε-Caprolacton) (PCL) Scaffolds wurden entweder mittels Solution Electrospinning (ES) oder Melt Electrowriting (MEW) hergestellt. Während ES eine zufällig orientierte Faserablage zur Folge hat, erlaubt MEW eine präzise Kontrolle der Scaffold-Morphologie. Zunächst wurde eine neue Strategie zur Nachahmung und Abmilderung des ersten direkten Zellkontakts während der Immunreaktion vorgestellt. Dabei wurde die Interaktion zwischen Neutrophilen mit einem Peptid-bioaktivierten Fasermaterial untersucht (Kapitel 3), wobei der sog. Neutrophilen-Angriff mittels des Enzyms Neutrophilen Elastase (HNE) nachgeahmt wurde. Das an der Faseroberfläche immobilisierte CGGGAAPVGGRGDS-Peptid verfügte über eine spezifische HNE-Schnittstelle (AAPV-Motiv), an welcher die Elastase das Peptid effizient degradieren konnte. Das Degradationsverhalten des Enzyms wurde anschließend über L929 Zelladhärenz analysiert, welche über das RGDS-Motiv im Peptid vermittelt wurde. Im Rahmen der Arbeit konnte nachgewiesen werden, dass der Neutrophilen-Angriff und die damit einhergehende Verringerung des RGDS-Motivs zu einer reduzierten Zelladhärenz führte. Die Einbettung des Scaffolds in ein Hydrogel auf der Basis von Aldehyd-haltiger Hyaluronsäure (proxHA) bot während des Neutrophilen-Angriffs einen optimalen Schutz der Peptidfunktionalität. Um diese wiederum anschließend für Adhäsionsversuche verfügbar zu machen, konnte das Hydrogelsystem derartig eingestellt werden, dass sich dieses innerhalb weniger Tage auflöste. Auf diese Weise konnte das Hydrogel den Neutrophilen-Angriff abmildern und so die Integrität des Biomaterials weitestgehend gewährleisten. Kapitel 4 behandelt die Präzisierung der Faserablage, insbesondere die Verringerung des Faserabstands, während des MEW-Prozesses. Zunächst wurde der Einfluss verschiedener Parameter (Spinndüsendurchmesser, angelegter Luftdruck und Kollektorgeschwindigkeit) auf die mechanischen Eigenschaften, die Kristallinität, den Faserdurchmesser und die Faseroberflächenmorphologie analysiert. Durch Optimierung der Druckparameter konnten innovative MEW-Designs (u.a. mit runder Porengeometrie) gedruckt werden. Der Abstand zwischen den Fasern in einem Scaffold mit standardisierter kastenförmiger Porengeometrie wurde erfolgreich auf 40 µm reduziert, während gleichzeitig eine hohe Stapelpräzision gewährleistet wurde. In Zusammenarbeit mit einer Kollegin am Lehrstuhl (Tina Tylek, die alle zellbasierten Experimente in dieser Studie durchführte) wurde nachgewiesen, dass diese innovativen MEW-Scaffolds die Polarisierung menschlicher Makrophagen in Richtung des regenerativen M2-Typs förderten. Die Makrophagen-Polarisierung ging einher mit einer Zellelongation, wobei dieser Effekt verstärkt für kleinere Porengrößen auftrat. Abschließend stand die Untersuchung der pro-adipogenen Wirkung von faserfunktionalisierten MEW-Scaffolds im Fokus (Kapitel 5), welche mit ECM-Proteinen, wie beispielsweise dezellularisiertes Fettgewebe (DAT), beschichtet wurden. Das pro-adipogene Potential dieser Materialien wurde mit Hilfe einer adipogenen Kurzzeitinduktion näher analysiert, da eine Langzeitapplikation der Differenzierungsreagenzien diesen Effekt überdeckte. Die Scaffolds mit der DAT-Beschichtung zeigten durchweg die höchste adipogene Differenzierung und boten somit für Stammzellen eine adipo-induzierende Mikroumgebung, weshalb sie für die Anwendung in der Weichgeweberegeneration sehr vielversprechend sind. An diese Arbeit anschließende Experimente sollten alle drei Projekte in einem Co-Kulturansatz von Neutrophilen, Makrophagen und MSCs kombinieren, um so einen stärkeren in vivo-Bezug herzustellen. Hierfür erweist sich das MEW-Scaffold insbesondere durch seine Kombinationsfähigkeit der Oberflächenfunktionalität und Morphologie als Ansatz für einen erfolgreichen Wundheilungsprozess und ebnet damit den Weg für eine bestmögliche Geweberegeneration. KW - Scaffold KW - Biomaterial KW - tissue regeneration KW - melt electrowriting KW - Scaffold Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212117 ER - TY - JOUR A1 - Diloksumpan, Paweena A1 - de Ruijter, Mylène A1 - Castilho, Miguel A1 - Gbureck, Uwe A1 - Vermonden, Tina A1 - van Weeren, P René A1 - Malda, Jos A1 - Levato, Riccardo T1 - Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces JF - Biofabrication N2 - Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces. KW - biofabrication KW - melt electrowriting KW - bioinspired interface KW - bone and cartilage tissue engineering KW - microfibres KW - ceramics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254005 VL - 12 IS - 2 ER - TY - JOUR A1 - Haag, Hannah A1 - Sonnleitner, David A1 - Lang, Gregor A1 - Dalton, Paul D. T1 - Melt electrowriting to produce microfiber fragments JF - Polymers for Advanced Technologies KW - melt electrowriting KW - medical-grade poly(ε-caprolactone) KW - fiber Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318465 SN - 1042-7147 VL - 33 IS - 6 SP - 1989 EP - 1992 ER - TY - THES A1 - Hochleitner, Gernot T1 - Advancing melt electrospinning writing for fabrication of biomimetic structures T1 - Entwicklung des Melt Electrospinning Writing zur Erzeugung biomimetischer Strukturen N2 - In order to mimic the extracellular matrix for tissue engineering, recent research approaches often involve 3D printing or electrospinning of fibres to scaffolds as cell carrier material. Within this thesis, a micron fibre printing process, called melt electrospinning writing (MEW), combining both additive manufacturing and electrospinning, has been investigated and improved. Thus, a unique device was developed for accurate process control and manufacturing of high quality constructs. Thereby, different studies could be conducted in order to understand the electrohydrodynamic printing behaviour of different medically relevant thermoplastics as well as to characterise the influence of MEW on the resulting scaffold performance. For reproducible scaffold printing, a commonly occurring processing instability was investigated and defined as pulsing, or in extreme cases as long beading. Here, processing analysis could be performed with the aim to overcome those instabilities and prevent the resulting manufacturing issues. Two different biocompatible polymers were utilised for this study: poly(ε-caprolactone) (PCL) as the only material available for MEW until then and poly(2-ethyl-2-oxazoline) for the first time. A hypothesis including the dependency of pulsing regarding involved mass flows regulated by the feeding pressure and the electrical field strength could be presented. Further, a guide via fibre diameter quantification was established to assess and accomplish high quality printing of scaffolds for subsequent research tasks. By following a combined approach including small sized spinnerets, small flow rates and high field strengths, PCL fibres with submicron-sized fibre diameters (fØ = 817 ± 165 nm) were deposited to defined scaffolds. The resulting material characteristics could be investigated regarding molecular orientation and morphological aspects. Thereby, an alignment and isotropic crystallinity was observed that can be attributed to the distinct acceleration of the solidifying jet in the electrical field and by the collector uptake. Resulting submicron fibres formed accurate but mechanically sensitive structures requiring further preparation for a suitable use in cell biology. To overcome this handling issue, a coating procedure, by using hydrophilic and cross-linkable star-shaped molecules for preparing fibre adhesive but cell repellent collector surfaces, was used. Printing PCL fibre patterns below the critical translation speed (CTS) revealed the opportunity to manufacture sinusoidal shaped fibres analogously to those observed using purely viscous fluids falling on a moving belt. No significant influence of the high voltage field during MEW processing could be observed on the buckling phenomenon. A study on the sinusoidal geometry revealed increasing peak-to-peak values and decreasing wavelengths as a function of decreasing collector speeds sc between CTS > sc ≥ 2/3 CTS independent of feeding pressures. Resulting scaffolds printed at 100 %, 90 %, 80 % and 70 % of CTS exhibited significantly different tensile properties, foremost regarding Young’s moduli (E = 42 ± 7 MPa to 173 ± 22 MPa at 1 – 3 % strain). As known from literature, a changed morphology and mechanical environment can impact cell performance substantially leading to a new opportunity of tailoring TE scaffolds. Further, poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) as well as poly(ε-caprolactone-co-acryloyl carbonate) (PCLAC) copolymers could be used for MEW printing. Those exhibit the opportunity for UV-initiated radical cross-linking in a post-processing step leading to significantly increased mechanical characteristics. Here, single fibres of the polymer composed of 90 mol.% CL and 10 mol.% AC showed a considerable maximum tensile strength of σmax = 53 ± 16 MPa. Furthermore, sinusoidal meanders made of PCLAC yielded a specific tensile stress-strain characteristic mimicking the qualitative behaviour of tendons or ligaments. Cell viability by L929 murine fibroblasts and live/dead staining with human mesenchymal stem cells revealed a promising biomaterial behaviour pointing out MEW printed PCLAC scaffolds as promising choice for medical repair of load-bearing soft tissue. Indeed, one apparent drawback, the small throughput similar to other AM methods, may still prevent MEW’s industrial application yet. However, ongoing research focusses on enlargement of manufacturing speed with the clear perspective of relevant improvement. Thereby, the utilisation of large spinneret sizes may enable printing of high volume rates, while downsizing the resulting fibre diameter via electrical field and mechanical stretching by the collector uptake. Using this approach, limitations of FDM by small nozzle sizes could be overcome. Thinking visionary, such printing devices could be placed in hospitals for patient-specific printing-on-demand therapies one day. Taking the evolved high deposition precision combined with the unique small fibre diameter sizes into account, technical processing of high performance membranes, filters or functional surface finishes also stands to reason. N2 - Um biomimetische extrazelluläre Matrices für das Tissue Engineering herzustellen, bedienen sich aktuelle Forschungsansätze oftmals der Produktion von Faser-Konstrukten durch additive Fertigung oder Elektrospinn-Verfahren. Das sogenannte Melt Electrospinning Writing (MEW) kombiniert Vorteile beider Techniken und weist dadurch ein hohes Applikationspotential auf. Daher bestand das Ziel der vorliegenden Arbeit in der Weiterentwicklung und Erforschung des MEW. Für diesen Zweck wurde eine neuartige Forschungsanlage konzipiert und gebaut, welche mit einzigartiger Verfahrenspräzision und Prozesskontrolle die Fertigung von hochqualitativen Konstrukten ermöglichte. Auf Basis dessen konnten die durchgeführten Studien das Verständnis des elektrohydrodynamischen Druckvorgangs und der untersuchten Prozessparameter vertiefen und letztendlich zur Ausweitung des Verfahrens auf neue medizinisch relevante Thermoplaste beitragen. Um eine reproduzierbare Herstellung von Scaffolds zu ermöglichen, wurde eine häufig auftretende Prozessinstabilität erforscht und als pulsing, oder in stark ausgeprägten Fällen als long beading, klassifiziert. Durch Prozessanalyse konnte zudem eine Methode zur Vermeidung dieser Instabilität entwickelt werden. Dafür wurden zwei unterschiedliche biokompatible Polymere verwendet: Poly(ε-Caprolacton) (PCL) als bis dahin einziger verfügbarer MEW Werkstoff, sowie erstmalig Poly(2-Ethyl-2-Oxazolin). Die aufgestellte Hypothese umfasst eine universelle Abhängigkeit der pulsing Instabilität zu involvierten Massenströmen, welche durch Anpassung des angelegten Prozessdruckes und der elektrischen Feldstärke reguliert werden kann. Um ein optimales Prozessergebnis für nachfolgende Forschungsarbeiten zu erzielen, wurde zusätzlich ein Leitfaden zur quantitativen Bewertung des Grades der Instabilität bereitgestellt. Durch Kombination kleiner Spinndüsen, kleiner Schmelze-Flussraten und hoher elektrischen Feldstärken, konnten erstmalig PCL Fasern mit sub-mikron Durchmessern (fØ = 817 ± 165 nm) zu präzisen Scaffolds verarbeitet werden. Diese wurden anschließend durch materialwissenschaftliche Analytik charakterisiert. Dabei wurde eine molekulare Vorzugsorientierung und isotrope Kristallausrichtung entlang der Faser beobachtet, welche durch den hohen Verstreckungsgrad des erstarrenden Polymerstrahls erklärt werden konnte. Resultierende sub-mikron Fasern konnten zwar für einen akkuraten Druckvorgang verwendet werden, jedoch erwiesen sich die Strukturen als instabil und daher nicht geeignet für die Handhabung bei Zellkulturstudien. Aus diesem Grund wurde ein Beschichtungsansatz mittels hydrophilen und vernetzbaren Sternmolekülen für Substratflächen herangezogen. Während solche modifizierten Oberflächen bekanntermaßen Zelladhäsion verhindern, konnten gedruckte sub-mikron Scaffolds auf der Oberfläche haften und so für biologische Studien verwendet werden. Durch das gezielte Ablegen von Fasern unterhalb der kritischen Translationsgeschwindigkeit (CTS) des Kollektors, konnten sinusförmige Faserstrukturen erzeugt werden. Analog zu rein viskosen Fluiden, welche durch ein bewegliches Band aufgesammelt werden, schien dieser Vorgang dem sogenannten buckling zu unterliegen und daher phänomenologisch nicht oder nur geringfügig vom elektrischen Feld abhängig zu sein. Zudem konnte eine durchgeführte Studie die direkte Abhängigkeit der Fasergeometrie mit der Kollektorbewegung belegen. Unabhängig vom Prozessdruck, führte eine verminderte Kollektorgeschwindigkeit sc in den Grenzen CTS > sc ≥ 2/3 CTS zu erhöhten Amplituden bzw. Spitze-zu-Spitze Werten und verkürzten Wellenlängen. Durch das kontrollierte Ablegen der Fasern bei Geschwindigkeiten von 100 %, 90 % 80 % und 70 % CTS konnten zudem Scaffolds mit unterschiedlichen mechanischen Eigenschaften hergestellt werden. Speziell der Zugmodul wurde dadurch etwa um eine halbe Größenordnung moduliert (Es = 42 ± 7 MPa bis 173 ± 22 MPa bei 1 – 3 % Dehnung). Dies ist in Kombination mit der Strukturierung für maßgeschneiderte TE Scaffolds von großem Interesse, da zelluläre Systeme sensibel auf ihre Umgebung reagieren können. Des Weiteren wurden Poly(L-Lactid-co-ε-Caprolacton-co-Acryloylcarbonat) und Poly(ε-Caprolacton-co-Acryloylcarbonat) (PCLAC) Copolymere hinsichtlich deren MEW Verarbeitbarkeit untersucht. Solche Kunststoffe können nach dem Druckvorgang mit UV-Strahlung radikalisch vernetzt werden und dadurch deutlich erhöhte mechanische Eigenschaften ausbilden. Für Fasern aus 90 mol.% CL und 10 mol.% AC wurden beispielsweise maximale Zugfestigkeiten von σmax = 53 ± 16 MPa ermittelt. MEW gedruckte sinusförmige Faserstrukturen aus PCLAC wiesen darüber hinaus ein biomimetisches Spannungs-Dehnung-Verhalten auf, vergleichbar zu Sehnen- und Ligamentgewebe. Eine Untersuchung der Zellviabilität von L929 murinen Fibroblasten im Eluattest, sowie eine lebend/tot-Färbung von humanen mesenchymalen Stammzellen auf den Scaffolds, ergab vielversprechende Resultate und damit ein relevantes Anwendungspotential solcher Strukturen als Implantat. Neben genannten Vorteilen, weist MEW als Verfahren bislang allerdings geringe Produktionsgeschwindigkeiten auf. Diese sind daher in den Fokus aktueller Forschungsvorhaben gerückt. Einen Ansatz hierfür bieten Spinndüsen mit hohem Innendurchmesser und erhöhter Austragsrate, wobei die optimierte elektrische Feldstärke, sowie ein Verstrecken durch die Kollektorbewegung, zu den erwünschten dünnen Fasern führen können. Dadurch kann die abwärtslimitierte Düsengröße des FDM Verfahrens überwunden werden. Visionär gedacht, könnte eine solche Anlage direkt in Krankenhäusern zur Fertigung von patienten- und defektspezifischen Implantaten eingesetzt werden. Darüber hinaus ermöglicht die hohe Präzision, zusammen mit dem Drucken von Mikro-Fasern, einen technischen Einsatz zur Herstellung von Membranen, Filtern oder funktionalen Oberflächenbeschichtungen. KW - scaffold KW - polymer KW - 3D printing KW - additive manufacturing KW - melt electrospinning KW - melt electrowriting KW - tissue engineering KW - polymer processing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162197 ER - TY - JOUR A1 - Janzen, Dieter A1 - Bakirci, Ezgi A1 - Faber, Jessica A1 - Andrade Mier, Mateo A1 - Hauptstein, Julia A1 - Pal, Arindam A1 - Forster, Leonard A1 - Hazur, Jonas A1 - Boccaccini, Aldo R. A1 - Detsch, Rainer A1 - Teßmar, Jörg A1 - Budday, Silvia A1 - Blunk, Torsten A1 - Dalton, Paul D. A1 - Villmann, Carmen T1 - Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation JF - Advanced Healthcare Materials N2 - 3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30–500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca\(^{2+}\) imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases. KW - 3D model systems KW - melt electrowriting KW - cortical neurons KW - astrocytes KW - Ca\(^{2+}\)-Imaging KW - hyaluronic acid Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318682 VL - 11 IS - 21 ER - TY - JOUR A1 - Janzen, Dieter A1 - Bakirci, Ezgi A1 - Wieland, Annalena A1 - Martin, Corinna A1 - Dalton, Paul D. A1 - Villmann, Carmen T1 - Cortical Neurons form a Functional Neuronal Network in a 3D Printed Reinforced Matrix JF - Advanced Healthcare Materials N2 - Impairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber‐reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforced with scaffolds created by melt electrowriting, improving its mechanical properties and facilitating the handling. Cortical neurons display enhance cell viability and the neuronal network maturation in 3D, estimated by staining of dendrites and synapses over 21 days in vitro, is faster in 3D compared to 2D cultures. Using functional readouts with electrophysiological recordings, different firing patterns of action potentials are observed, which are absent in the presence of the sodium channel blocker, tetrodotoxin. Voltage‐gated sodium currents display a current–voltage relationship with a maximum peak current at −25 mV. With its high customizability in terms of scaffold reinforcement and soft matrix formulation, this approach represents a new tool to study neuronal networks in 3D under normal and, potentially, disease conditions. KW - 3D electrophysiology KW - 3D neuronal networks KW - cortical neurons KW - melt electrowriting Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215400 VL - 9 IS - 9 ER - TY - JOUR A1 - Kade, Juliane C. A1 - Otto, Paul F. A1 - Luxenhofer, Robert A1 - Dalton, Paul D. T1 - Melt electrowriting of poly(vinylidene difluoride) using a heated collector JF - Polymers for Advanced Technologies N2 - Previous research on the melt electrowriting (MEW) of poly(vinylidene difluoride) (PVDF) resulted in electroactive fibers, however, printing more than five layers is challenging. Here, we investigate the influence of a heated collector to adjust the solidification rate of the PVDF jet so that it adheres sufficiently to each layer. A collector temperature of 110°C is required to improve fiber processing, resulting in a total of 20 fiber layers. For higher temperatures and higher layers, an interesting phenomenon occurred, where the intersection points of the fibers coalesced into periodic spheres of diameter 206 ± 52 μm (26G, 150°C collector temperature, 2000 mm/min, 10 layers in x- and y-direction).The heated collector is an important component of a MEW printer that allows polymers with a high melting point to be processable with increased layers. KW - additive manufacturing KW - polymer processing KW - melt electrowriting KW - electroactive Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318493 SN - 1042-7147 VL - 32 IS - 12 SP - 4951 EP - 4955 ER - TY - JOUR A1 - Mechau, Jannik A1 - Frank, Andreas A1 - Bakirci, Ezgi A1 - Gumbel, Simon A1 - Jungst, Tomasz A1 - Giesa, Reiner A1 - Groll, Jürgen A1 - Dalton, Paul D. A1 - Schmidt, Hans‐Werner T1 - Hydrophilic (AB)\(_{n}\) Segmented Copolymers for Melt Extrusion‐Based Additive Manufacturing JF - Macromolecular Chemistry and Physics N2 - Several manufacturing technologies beneficially involve processing from the melt, including extrusion‐based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt‐processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)‐based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to the different melt‐processing techniques. Using extrusion‐based printing, a width of approximately 260 µm is printed into 3D constructs, with excellent interlayer bonding at fiber junctions, due to hydrogen bonding between the layers. For melt electrospinning, much thinner fibers in the range of about 1–15 µm are obtained and produced in a typical nonwoven morphology. With melt electrowriting, fibers are deposited in a controlled way to well‐defined 3D constructs. In this case, multiple fiber layers fuse together enabling constructs with line width in the range of 70 to 160 µm. If exposed to water the printed constructs swell and form physically crosslinked hydrogels that slowly disintegrate, which is a feature for soluble inks within biofabrication strategies. In this context, cytotoxicity tests confirm the viability of cells and thus demonstrating biocompatibility of this class of copolymers. KW - 3D printing KW - (AB)\(_{n}\) segmented copolymers KW - biocompatibility KW - melt electrowriting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224513 VL - 222 IS - 1 ER - TY - JOUR A1 - Ryma, Matthias A1 - Genç, Hatice A1 - Nadernezhad, Ali A1 - Paulus, Ilona A1 - Schneidereit, Dominik A1 - Friedrich, Oliver A1 - Andelovic, Kristina A1 - Lyer, Stefan A1 - Alexiou, Christoph A1 - Cicha, Iwona A1 - Groll, Jürgen T1 - A Print-and-Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels JF - Advanced Materials N2 - A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days. KW - hydrogels KW - microvasculature KW - melt electrowriting Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318532 VL - 34 IS - 28 ER - TY - JOUR A1 - Ryma, Matthias A1 - Tylek, Tina A1 - Liebscher, Julia A1 - Blum, Carina A1 - Fernandez, Robin A1 - Böhm, Christoph A1 - Kastenmüller, Wolfgang A1 - Gasteiger, Georg A1 - Groll, Jürgen T1 - Translation of collagen ultrastructure to biomaterial fabrication for material-independent but highly efficient topographic immunomodulation JF - Advanced materials N2 - Supplement-free induction of cellular differentiation and polarization solely through the topography of materials is an auspicious strategy but has so far significantly lagged behind the efficiency and intensity of media-supplementation-based protocols. Consistent with the idea that 3D structural motifs in the extracellular matrix possess immunomodulatory capacity as part of the natural healing process, it is found in this study that human-monocyte-derived macrophages show a strong M2a-like prohealing polarization when cultured on type I rat-tail collagen fibers but not on collagen I films. Therefore, it is hypothesized that highly aligned nanofibrils also of synthetic polymers, if packed into larger bundles in 3D topographical biomimetic similarity to native collagen I, would induce a localized macrophage polarization. For the automated fabrication of such bundles in a 3D printing manner, the strategy of “melt electrofibrillation” is pioneered by the integration of flow-directed polymer phase separation into melt electrowriting and subsequent selective dissolution of the matrix polymer postprocessing. This process yields nanofiber bundles with a remarkable structural similarity to native collagen I fibers, particularly for medical-grade poly(ε-caprolactone). These biomimetic fibrillar structures indeed induce a pronounced elongation of human-monocyte-derived macrophages and unprecedentedly trigger their M2-like polarization similar in efficacy as interleukin-4 treatment. KW - biofabrication KW - extracellular matrix KW - immunomodulation KW - macrophages KW - melt electrofibrillation KW - melt electrowriting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256381 VL - 33 IS - 33 ER - TY - JOUR A1 - Wang, Shuang A1 - Sarwat, Mariah A1 - Wang, Peng A1 - Surrao, Denver C. A1 - Harkin, Damien G. A1 - St John, James A. A1 - Bolle, Eleonore C. L. A1 - Forget, Aurelien A1 - Dalton, Paul D. A1 - Dargaville, Tim R. T1 - Hydrogels with Cell Adhesion Peptide‐Decorated Channel Walls for Cell Guidance JF - Macromolecular Rapid Communications N2 - A method is reported for making hollow channels within hydrogels decorated with cell‐adhesion peptides exclusively at the channel surface. Sacrificial fibers of different diameters are used to introduce channels within poly(ethylene glycol) hydrogels crosslinked with maleimide‐thiol chemistry, which are backfilled with a cysteine‐containing peptide solution which is conjugated to the lumen with good spatial efficiency. This allows for peptide patterning in only the areas of the hydrogel where they are needed when used as cell‐guides, reducing the amount of required peptide 20‐fold when compared to bulk functionalization. The power of this approach is highlighted by successfully using these patterned hydrogels without active perfusion to guide fibroblasts and olfactory ensheathing cells—the latter having unique potential in neural repair therapies. KW - 3D printing KW - cell guidance KW - cell transplantation KW - melt electrowriting KW - synthetic hydrogels Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218031 VL - 41 IS - 15 ER - TY - THES A1 - Youssef, Almoatazbellah T1 - Fabrication of Micro-Engineered Scaffolds for Biomedical Application T1 - Fabrikation von Scaffolds mit optimierter Mikroarchitektur für biomedizinische Anwendungen N2 - Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients’ own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW. N2 - Thermoplastische Polymere werden seit Jahrzehnten erfolgreich in der Klinik eingesetzt und für die Herstellung von Medizinprodukten verwendet. Vorangetrieben durch das zunehmende klinische Interesse an additiven Fertigungsverfahren, z.B. zur Herstellung patientenspezifischer Trainingsmodelle und implantierbarer Medizinprodukte, rücken thermoplastische Materialien noch mehr in den Fokus der klinischen Forschung. Allerdings stellt die Marktzulassung durch die verschiedenen Gesundheitsbehörden eine große Hürde dar. Eine mögliche Lösung ist die Gerüstfabrikation mit Materialien und Verfahren, die bereits etablierte Sicherheitsstandards durchlaufen haben, z. B. die Schmelzverarbeitung der Polymere. Ein neuartiges und hochauflösendes additives Fertigungsverfahren, welches die Verarbeitung von Thermoplasten ermöglicht, ist Melt Electrowriting (MEW). Mittels MEW lassen sich Gerüste, die aus Fasern mit Durchmessern im Mikrometerbereich zusammengesetzt sind, herstellen. Neben der hohen Kontrolle über den Faserdurchmesser ermöglicht MEW auch eine genaue Ablage der Fasern und erlaubt dadurch, die Mikroarchitektur der Konstrukte vorzugeben. Zudem kann das Verfahren medizinisch zugelassene thermoplastische Polymere ohne die Verwendung von Lösungsmitteln verarbeiten und ist somit für die Herstellung medizinischer Produkte sehr relevant. Diese Relevanz sollte im Rahmen der vorliegenden Dissertation evaluiert werden, indem der Weg, den ein Medizinprodukt von der Konzeption bis hin zu in vivo Vorversuchen durchlaufen muss, anhand von Konstrukten, die mittels MEW hergestellt wurden, nachgeahmt wurde. Um eine Basis für das Verständnis dieses Prozesses zu schaffen, wird in Kapitel 1 erst die Geschichte der Entwicklung medizinischer Implantate zusammengefasst sowie ein Einblick in die regenerativen Fähigkeiten des menschlichen Körpers gegeben. Das zweite Kapitel befasst sich mit der Anwendung von thermoplastischen Polymeren im Bereich implantierbarer Medizinprodukte, wobei der Hauptfokus auf Poly(ε-caprolactone) (PCL) liegt, da dies der in der vorliegenden Arbeit verwendete Thermoplast ist. Es folgt ein Vergleich von in vivo sowie klinischen Versuchen dreier für die Biomedizin relevanten additiven Fertigungsverfahren, mit denen sich thermoplastische Polymere verarbeiten lassen: Die Mikro-Schmelzextrusion, das selektive Lasersintern und das MEW. Die ersten zwei Verfahren sind bereits erfolgreich in klinischen Anwendungen etabliert und ermöglichen die routinemäßige Herstellung von additiv gefertigten, patientenspezifischen, auf dem Markt zugelassenen Implantaten. Damit MEW in diese Fußstapfen treten kann, müssen die Prozessparameter und deren Zusammenspiel genau analysiert werden. Dieser Thematik widmet sich Kapitel 3, wobei die Untersuchung des Massendurchsatzes des Polymers während des Druckens diskutiert wird. Um den MEW-Prozess kontrollieren zu können, muss eine Balance zwischen Polymerdurchsatz, dem stabilisierenden elektrischen Feld und dem beweglichen Kollektor erreicht werden. Dies ist Grundlage für die reproduzierbare Herstellung hochaufgelöster Konstrukte. Ein Ungleichgewicht der Prozessparameter verursacht Phänomene wie Fiber Pulsing oder sogar elektrischen Durchschlag, welche zu defekten Konstrukten oder sogar zur Schädigung des Druckers führen können. Kapitel 4 zeigt die Anwendung der Röntgenmikrocomputertomographie (µCT) als eine zerstörungsfreie Charakterisierungsmethode für MEW-Konstrukte, die die Quantifizierung charakteristischer Eigenschaften wie der Porosität und der Porengrößenverteilung ermöglicht. MEW-Konstrukte wurden in der Literatur lange als zweidimensional behandelt und hauptsächlich durch mikroskopische Verfahren wie die Stereo- und Rasterelektronmikroskopie charakterisiert. Die zweidimensionale Porengröße wurde hauptsächlich durch die Bestimmung des Faserabstands definiert und daraus errechnet, mit einer Tendenz der Herstellung der Konstrukte mit symmetrischen Poren in 0/90° und 0/60/120° Ablagemustern. Da es sich bei den Konstrukten jedoch um dreidimensionale (3D) Fasergerüste handelt, wurden die seitlichen Verbindungen zwischen den Poren und das Potential der Anwendung des MEW für die Herstellung von komplexeren 3D-Strukturen, wie bei der extrazellulären Matrix mit interkonnektierenden Poren, vernachlässigt. Aus diesem Grund wurden in der vorliegenden Arbeit µCT-Scans verwendet, um die Porosität der Konstrukte besser wiedergeben zu können. Hierzu wurden verschiedene Ablagemuster mit symmetrischen Poren in 0/90° und 0/60/120° Mustern und komplexere Porenstrukturen durch Ablagen von 0/45/90/135° und 0/30/60/90/120/150° Geometrien hergestellt. Diese Konstrukte wurden dann mittels mikroskopischer und tomographischer Aufnahmen charakterisiert und die Ergebnisse miteinander verglichen. Es zeigte sich, dass symmetrische Ablagemuster zu Konstrukten mit der Prädominanz einer Porengröße geführt haben. Bei den komplexeren Strukturen ergab sich jedoch ein klarer Unterschied, weil die interkonnektierenden Poren nur mit Hilfe von µCT-Scans erfasst werden konnten. Dies zeigte sich durch eine breitere Porenverteilung bei der Auswertung der rekonstruierten Scans. Die Porengrößen in den Konstrukten mit den symmetrischen Mustern konnten aufgrund einer Verflachungswirkung nicht die des Faserabstands erreichen. Die Dicke der Konstrukte war geringer als der Faserabstand mit einer weiteren einschränkenden Wirkung auf die Porenverteilung in den symmetrischen Konstrukten. µCT kann deshalb für die Qualitätssicherung von medizinischen Produkten, die mittels MEW hergestellt wurden, eingesetzt werden. Da die Methode zerstörungsfrei ist, könnte sie auch vor in vitro oder in vivo Versuchen verwendet werden. Kapitel 5 präsentiert eine Machbarkeitsstudie eines subkutanen in vivo Implantationsversuchs. Aus der Literatur ist zwar bekannt, dass MEW-Konstrukte bereits in vivo in Kleintierversuchen verwendet wurden, eine Analyse der Fremdkörperreaktion (FKR) zu solchen Implantaten wurde bisher jedoch noch nicht durchgeführt. FKR ist eine Immunreaktion gegen fremde, implantierte Materialien, einschließlich medizinischer Geräte, um den Wirt vor potenziellen Nebenwirkungen zu schützen. Allerdings könnte sie die Funktion verschiedener medizinischer Implantate beeinträchtigen Um dieser Fragestellung nachzugehen, wurde im Rahmen der vorliegenden Dissertation PCL mittels MEW zu Konstrukten mit 50 und 60 µm Fiberabstand in 0/90° bzw. 0/60/120° Ablagemuster verarbeitet. Diese Konstrukte wurden subkutan in immunkompetente, fremdgezüchtete Mäuse mit entsprechenden Kontrollen implantiert und nach 2, 4, 7 und 14 Tagen explantiert. Vor der Implantation wurde die Konstrukte ausführlich charakterisiert, gefolgt von einer vollen histopathologischen Analyse des FKR. Unabhängig von der Porengeometrie haben die Konstrukte eine deutliche Immunreaktion im Sinne einer Ansammlung von Fremdkörperriesenzellen um die Fasern der Konstrukte hervorgerufen. Hierbei wurden die Poren fast komplett verschlossen, ohne dass es zu einer Neovaskularisation kam. Es konnte nachgewiesen werden, dass die deutliche Immunantwort nicht durch das Material hervorgerufen wurde, da sie bei der Implantation von dichtem PCL-Film nicht beobachtet wurde. Eine Diskussion der Ergebnisse erfolgte unter Berücksichtigung aktueller Literatur zu klinischen Versuchen von flachen chirurgischen Netzen sowie porösen Hydrogel-basierten Implantaten mit vergleichbarer Porengröße. Abschließend wird die Arbeit in Kapitel 6 zusammengefasst und die wichtigsten Punkte rekapituliert. Der Fokus des Kapitels liegt hierbei auf dem zukünftigen Potential des MEW als Fabrikationsmethode für medizinische Produkte. KW - melt electrowriting KW - medical device KW - biomaterials KW - subcutaneous implanation KW - x-ray micro computed tomography Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235457 ER -