TY - JOUR A1 - Djuzenova, Cholpon S. A1 - Fischer, Thomas A1 - Katzer, Astrid A1 - Sisario, Dmitri A1 - Korsa, Tessa A1 - Streussloff, Gudrun A1 - Sukhorukov, Vladimir L. A1 - Flentje, Michael T1 - Opposite effects of the triple target (DNA-PK/PI3K/mTOR) inhibitor PI-103 on the radiation sensitivity of glioblastoma cell lines proficient and deficient in DNA-PKcs JF - BMC Cancer N2 - Background: Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. Methods: Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by gamma H2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. Results: We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (similar to 80% vs. similar to 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. Conclusions: The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism. KW - DNA damage KW - DNA-PK KW - Histone gamma H2AX KW - p53 KW - Radiation sensitivity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265826 VL - 21 ER - TY - JOUR A1 - Flentje, Michael A1 - Richter, Jürgen T1 - Professor Dr. Werner Bohndorf gestorben JF - Strahlentherapie und Onkologie N2 - Kein Abstract verfügbar. KW - Werner Bohndorf KW - Nachruf Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264838 SN - 1439-099X VL - 197 IS - 7 ER - TY - JOUR A1 - Mantel, Frederick A1 - Müller, Elena A1 - Kleine, Philip A1 - Zimmermann, Marcus A1 - Exner, Florian A1 - Richter, Anne A1 - Weick, Stefan A1 - Ströhle, Serge A1 - Polat, Bülent A1 - Höcht, Stefan A1 - Flentje, Michael T1 - Chemoradiotherapy by intensity-modulated radiation therapy with simultaneous integrated boost in locally advanced or oligometastatic non-small-cell lung cancer-a two center experience JF - Strahlentherapie und Onkologie N2 - Purpose Integrating moderate hypofractionation to the macroscopic tumor with elective nodal irradiation while sparing the organs at risk (OAR) in chemoradiotherapy of locally advanced non-small-cell lung cancer. Methods From 2010-2018, treatment, patient and tumor characteristics of 138 patients from two radiation therapy centers were assessed. Chemoradiotherapy by intensity-modulated radiation therapy (IMRT) with a simultaneous integrated boost (SIB) to the primary tumor and macroscopic lymph node metastases was used. Results A total of 124 (90%) patients received concurrent chemotherapy. 106 (76%) patients had UICC (Union for International Cancer Control) stage ≥IIIB and 21 (15%) patients had an oligometastatic disease (UICC stage IV). Median SIB and elective total dose was 61.6 and 50.4 Gy in 28 fractions, respectively. Furthermore, 64 patients (46%) had an additional sequential boost to the primary tumor after the SIB-IMRT main series: median 6.6 Gy in median 3 fractions. The median cumulative mean lung dose was 15.6 Gy (range 6.2-29.5 Gy). Median follow-up and radiological follow-up for all patients was 18.0 months (range 0.6-86.9) and 16.0 months (range 0.2-86.9), respectively. Actuarial local control rates at 1, 2 and 3 years were 80.4, 68.4 and 57.8%. Median overall survival and progression-free survival was 30.0 months (95% confidence interval [CI] 23.5-36.4) and 12.1 months (95% CI 8.2-16.0), respectively. Treatment-related toxicity was moderate. Radiation-induced pneumonitis grade 2 and grade 3 occurred in 13 (9.8%) and 3 (2.3%) patients. Conclusions Chemoradiotherapy using SIB-IMRT showed promising local tumor control rates and acceptable toxicity in patients with locally advanced and in part oligometastatic lung cancer. The SIB concept, resulting in a relatively low mean lung dose, was associated with low numbers of clinically relevant pneumonitis. The overall survival appears promising in the presence of a majority of patients with UICC stage ≥IIIB disease. KW - local control KW - image-guided radiation therapy KW - thoracic cancer KW - hypofractionation KW - multimodal therapy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264821 SN - 1439-099X VL - 197 IS - 5 ER - TY - JOUR A1 - Pinkawa, Michael A1 - Aebersold, Daniel M. A1 - Böhmer, Dirk A1 - Flentje, Michael A1 - Ghadjar, Pirus A1 - Schmidt-Hegemann, Nina-Sophie A1 - Höcht, Stefan A1 - Hölscher, Tobias A1 - Müller, Arndt-Christian A1 - Niehoff, Peter A1 - Sedlmayer, Felix A1 - Wolf, Frank A1 - Zamboglou, Constantinos A1 - Zips, Daniel A1 - Wiegel, Thomas T1 - Radiotherapy in nodal oligorecurrent prostate cancer JF - Strahlentherapie und Onkologie N2 - Objective The current article encompasses a literature review and recommendations for radiotherapy in nodal oligorecurrent prostate cancer. Materials and methods A literature review focused on studies comparing metastasis-directed stereotactic ablative radiotherapy (SABR) vs. external elective nodal radiotherapy (ENRT) and studies analyzing recurrence patterns after local nodal treatment was performed. The DEGRO Prostate Cancer Expert Panel discussed the results and developed treatment recommendations. Results Metastasis-directed radiotherapy results in high local control (often > 90% within a follow-up of 1–2 years) and can be used to improve progression-free survival or defer androgen deprivation therapy (ADT) according to prospective randomized phase II data. Distant progression after involved-node SABR only occurs within a few months in the majority of patients. ENRT improves metastases-free survival rates with increased toxicity in comparison to SABR according to retrospective comparative studies. The majority of nodal recurrences after initial local treatment of pelvic nodal metastasis are detected within the true pelvis and common iliac vessels. Conclusion ENRT with or without a boost should be preferred to SABR in pelvic nodal recurrences. In oligometastatic prostate cancer with distant (extrapelvic) nodal recurrences, SABR alone can be performed in selected cases. Application of additional systemic treatments should be based on current guidelines, with ADT as first-line treatment for hormone-sensitive prostate cancer. Only in carefully selected patients can radiotherapy be initially used without additional ADT outside of the current standard recommendations. Results of (randomized) prospective studies are needed for definitive recommendations. KW - prostate cancer KW - oligorecurrence KW - metastasis-directed therapy KW - radiation therapy KW - androgen deprivation therapy KW - stereotactic body radiotherapy KW - oligmometastases KW - lymph node metastases Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-307763 SN - 0179-7158 SN - 1439-099X VL - 197 IS - 7 ER - TY - JOUR A1 - Richter, Anne A1 - Wegener, Sonja A1 - Breuer, Kathrin A1 - Razinskas, Gary A1 - Weick, Stefan A1 - Exner, Florian A1 - Bratengeier, Klaus A1 - Flentje, Michael A1 - Sauer, Otto A1 - Polat, Bülent T1 - Comparison of sliding window and field-in-field techniques for tangential whole breast irradiation using the Halcyon and Synergy Agility systems JF - Radiation Oncology N2 - Background To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. Methods For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. Results The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. Conclusions For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system. KW - whole breast irradiation KW - Halcyon KW - IGRT KW - dose to OARs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265704 VL - 16 ER - TY - JOUR A1 - Tamihardja, Jörg A1 - Cirsi, Sinan A1 - Kessler, Patrick A1 - Razinskas, Gary A1 - Exner, Florian A1 - Richter, Anne A1 - Polat, Bülent A1 - Flentje, Michael T1 - Cone beam CT-based dose accumulation and analysis of delivered dose to the dominant intraprostatic lesion in primary radiotherapy of prostate cancer JF - Radiation Oncology N2 - Background Evaluation of delivered dose to the dominant intraprostatic lesion (DIL) for moderately hypofractionated radiotherapy of prostate cancer by cone beam computed tomography (CBCT)-based dose accumulation and target coverage analysis. Methods Twenty-three patients with localized prostate cancer treated with moderately hypofractionated prostate radiotherapy with simultaneous integrated boost (SIB) between December 2016 and February 2020 were retrospectively analyzed. Included patients were required to have an identifiable DIL on bi-parametric planning magnetic resonance imaging (MRI). After import into the RayStation treatment planning system and application of a step-wise density override, the fractional doses were computed on each CBCT and were consecutively mapped onto the planning CT via a deformation vector field derived from deformable image registration. Fractional doses were accumulated for all CBCTs and interpolated for missing CBCTs, resulting in the delivered dose for PTV\(_{DIL}\), PTV\(_{Boost}\), PTV, and the organs at risk. The location of the index lesions was recorded according to the sector map of the Prostate Imaging Reporting and Data System (PIRADS) Version 2.1. Target coverage of the index lesions was evaluated and stratified for location. Results In total, 338 CBCTs were available for analysis. Dose accumulation target coverage of PTV\(_{DIL}\), PTV\(_{Boost}\), and PTV was excellent and no cases of underdosage in D\(_{Mean}\), D_95%, D_02%, and D_98% could be detected. Delivered rectum D\(_{Mean}\) did not significantly differ from the planned dose. Bladder mean DMean was higher than planned with 19.4 ± 7.4 Gy versus 18.8 ± 7.5 Gy, p < 0.001. The penile bulb showed a decreased delivered mean DMean with 29.1 ± 14.0 Gy versus 29.8 ± 14.4 Gy, p < 0.001. Dorsal DILs, defined as DILs in the posterior medial peripheral zone of the prostate, showed a significantly lower delivered dose with a mean DMean difference of 2.2 Gy (95% CI 1.3–3.1 Gy, p < 0.001) compared to ventral lesions. Conclusions CBCT-based dose accumulation showed an adequate delivered dose to the dominant intraprostatic lesion and organs at risk within planning limits. Cautious evaluation of the target coverage for index lesions adjacent to the rectum is warranted to avoid underdosage. KW - adaptive radiotherapy KW - deformable image registration KW - dominant intraprostatic lesion KW - dose accumulation KW - prostate cancer KW - prostate Imaging Reporting and Data System Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265656 VL - 16 ER - TY - JOUR A1 - Tamihardja, Jörg A1 - Lutyj, Paul A1 - Kraft, Johannes A1 - Lisowski, Dominik A1 - Weick, Stefan A1 - Flentje, Michael A1 - Polat, Bülent T1 - Two-Weekly High-Dose-Rate Brachytherapy Boost After External Beam Radiotherapy for Localized Prostate Cancer: Long-Term Outcome and Toxicity Analysis JF - Frontiers in Oncology N2 - Purpose Evaluation of clinical outcome of two-weekly high-dose-rate brachytherapy boost after external beam radiotherapy (EBRT) for localized prostate cancer. Methods 338 patients with localized prostate cancer receiving definitive EBRT followed by a two-weekly high-dose-rate brachytherapy boost (HDR-BT boost) in the period of 2002 to 2019 were analyzed. EBRT, delivered in 46 Gy (DMean) in conventional fractionation, was followed by two fractions HDR-BT boost with 9 Gy (D90%) two and four weeks after EBRT. Androgen deprivation therapy (ADT) was added in 176 (52.1%) patients. Genitourinary (GU)/gastrointestinal (GI) toxicity was evaluated utilizing the Common Toxicity Criteria for Adverse Events (version 5.0) and biochemical failure was defined according to the Phoenix definition. Results Median follow-up was 101.8 months. 15 (4.4%)/115 (34.0%)/208 (61.5%) patients had low-/intermediate-/high-risk cancer according to the D`Amico risk classification. Estimated 5-year and 10-year biochemical relapse-free survival (bRFS) was 84.7% and 75.9% for all patients. The estimated 5-year bRFS was 93.3%, 93.4% and 79.5% for low-, intermediate- and high-risk disease, respectively. The estimated 10-year freedom from distant metastasis (FFM) and overall survival (OS) rates were 86.5% and 70.0%. Cumulative 5-year late GU toxicity and late GI toxicity grade ≥ 2 was observed in 19.3% and 5.0% of the patients, respectively. Cumulative 5-year late grade 3 GU/GI toxicity occurred in 3.6%/0.3%. Conclusions Two-weekly HDR-BT boost after EBRT for localized prostate cancer showed an excellent toxicity profile with low GU/GI toxicity rates and effective long-term biochemical control. KW - prostate cancer KW - high-dose-rate (HDR) brachytherapy KW - radiotherapy KW - long-term outcome KW - toxicity KW - external beam radiotherapy (EBRT) KW - biochemical relapse free survival Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250992 SN - 2234-943X VL - 11 ER - TY - JOUR A1 - Tamihardja, Jörg A1 - Razinskas, Gary A1 - Exner, Florian A1 - Richter, Anne A1 - Kessler, Patrick A1 - Weick, Stefan A1 - Kraft, Johannes A1 - Mantel, Frederick A1 - Flentje, Michael A1 - Polat, Bülent T1 - Comparison of treatment plans for hypofractionated high-dose prostate cancer radiotherapy using the Varian Halcyon and the Elekta Synergy platforms JF - Journal of Applied Clinical Medical Physics N2 - Purpose To compare radiotherapy plans between an O-ring and a conventional C-arm linac for hypofractionated high-dose prostate radiotherapy in terms of plan quality, dose distribution, and quality assurance in a multi-vendor environment. Methods Twenty prostate cancer treatment plans were irradiated on the O-ring Varian Halcyon linac and were re-optimized for the C-arm Elekta Synergy Agility linac. Dose-volume histogram metrics for target coverage and organ at risk dose, quality assurance, and monitor units were retrospectively compared. Patient-specific quality assurance with ion chamber measurements, gamma index analysis, and portal dosimetry was performed using the Varian Portal Dosimetry system and the ArcCHECK® phantom (Sun Nuclear Corporation). Prostate-only radiotherapy was delivered with simultaneous integrated boost (SIB) volumetric modulated arc therapy (VMAT) in 20 fractions of 2.5/3.0 Gy each. Results For both linacs, target coverage was excellent and plan quality comparable. Homogeneity in PTVBoost was high for Synergy as well as Halcyon with a mean homogeneity index of 0.07 ± 0.01 and 0.05 ± 0.01, respectively. Mean dose for the organs at risk rectum and bladder differed not significantly between the linacs but were higher for the femoral heads and penile bulb for Halcyon. Quality assurance showed no significant differences in terms of ArcCHECK gamma pass rates. Median pass rate for 3%/2 mm was 99.3% (96.7 to 99.8%) for Synergy and 99.8% (95.6 to 100%) for Halcyon. Agreement between calculated and measured dose was high with a median deviation of −0.6% (−1.7 to 0.8%) for Synergy and 0.2% (−0.6 to 2.3%) for Halcyon. Monitor units were higher for the Halcyon by approximately 20% (p < 0.001). Conclusion Hypofractionated high-dose prostate cancer SIB VMAT on the Halcyon system is feasible with comparable plan quality in reference to a standard C-arm Elekta Synergy linac. KW - acute toxicity KW - dose evaluation KW - Halcyon KW - hypofractionation KW - prostate cancer KW - Synergy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260722 VL - 22 IS - 9 ER - TY - JOUR A1 - Tamihardja, Jörg A1 - Schortmann, Max A1 - Lawrenz, Ingulf A1 - Weick, Stefan A1 - Bratengeier, Klaus A1 - Flentje, Michael A1 - Guckenberger, Matthias A1 - Polat, Bülent T1 - Moderately hypofractionated radiotherapy for localized prostate cancer: updated long-term outcome and toxicity analysis JF - Strahlentherapie und Onkologie N2 - Purpose Evaluation of long-term outcome and toxicity of moderately hypofractionated radiotherapy using intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost treatment planning and cone beam CT-based image guidance for localized prostate cancer. Methods Between 2005 and 2015, 346 consecutive patients with localized prostate cancer received primary radiotherapy using cone beam CT-based image-guided intensity-modulated radiotherapy (IG-IMRT) and volumetric modulated arc therapy (IG-VMAT) with a simultaneous integrated boost (SIB). Total doses of 73.9 Gy (n = 44) and 76.2 Gy (n = 302) to the high-dose PTV were delivered in 32 and 33 fractions, respectively. The low-dose PTV received a dose (D95) of 60.06 Gy in single doses of 1.82 Gy. The pelvic lymph nodes were treated in 91 high-risk patients to 45.5 Gy (D95). Results Median follow-up was 61.8 months. The 5‑year biochemical relapse-free survival (bRFS) was 85.4% for all patients and 93.3, 87.4, and 79.4% for low-, intermediate-, and high-risk disease, respectively. The 5‑year prostate cancer-specific survival (PSS) was 94.8% for all patients and 98.7, 98.9, 89.3% for low-, intermediate-, and high-risk disease, respectively. The 5‑year and 10-year overall survival rates were 83.8 and 66.3% and the 5‑year and 10-year freedom from distant metastasis rates were 92.2 and 88.0%, respectively. Cumulative 5‑year late GU toxicity and late GI toxicity grade ≥2 was observed in 26.3 and 12.1% of the patients, respectively. Cumulative 5‑year late grade 3 GU/GI toxicity occurred in 4.0/1.2%. Conclusion Moderately hypofractionated radiotherapy using SIB treatment planning and cone beam CT image guidance resulted in high biochemical control and survival with low rates of late toxicity. KW - simultaneous integrated boost KW - cone beam CT KW - hypofractionation KW - intensity-modulated radiation therapy KW - image-guided radiation therapy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232509 SN - 0179-7158 VL - 197 ER -