TY - THES A1 - Hammer, Sebastian Tobias T1 - Influence of Crystal Structure on Excited States in Crystalline Organic Semiconductors T1 - Einfluss der Kristallstruktur auf angeregte Zustände in kristallinen organischen Halbleitern N2 - This thesis focused on the influence of the underlying crystal structure and hence, of the mutual molecular orientation, on the excited states in ordered molecular aggregates. For this purpose, two model systems have been investigated. In the prototypical donor-acceptor complex pentacene-perfluoropentacene (PEN-PFP) the optical accessibility of the charge transfer state and the possibility to fabricate highly defined interfaces by means of single crystal templates enabled a deep understanding of the spatial anisotropy of the charge transfer state formation. Transferring the obtained insights to the design of prototypical donor-acceptor devices, the importance of interface control to minimize the occurrence of charge transfer traps and thereby, to improve the device performance, could be demonstrated. The use of zinc phthalocyanine (ZnPc) allowed for the examination of the influence of molecular packing on the excited electronic states without a change in molecular species by virtue of its inherent polymorphism. Combining structural investigations, optical absorption and emission spectroscopy, as well as Franck-Condon modeling of emission spectra revealed the nature of the optical excited state emission in relation to the structural \(\alpha \) and \(\beta \) phase over a wide temperature range from 4 K to 300 K. As a results, the phase transition kinetics of the first order \(\alpha \rightarrow \beta\) phase transition were characterized in depth and applied to the fabrication of prototypical dual luminescent OLEDs. N2 - Ziel dieser Arbeit war es, den Einfluss der zugrunde liegenden Kristallstruktur und der damit einhergehenden molekularen Anordnung auf die angeregten Zustände in molekularen Aggregaten zu untersuchen. Zu diesem Zweck wurden zwei Modellsysteme ausgewählt. Der optisch anregbare und detektierbare Ladungstransferzustand im Donor-Akzeptor Komplex Pentacen-Perfluoropentacen (PEN-PFP) und die Möglichkeit, hoch definierte kristalline Grenzflächen herzustellen, ermöglichten detaillierte Einblicke in die räumlich anisotrope Ausbildung des Ladungstransferzustands. Durch Ausnutzen der gewonnenen Erkenntnisse beim Design von Bauteilen auf Basis dieser Donor-Akzeptor Grenzflächen konnte gezeigt werden, wie wichtig die morphologische Kontrolle ist, um das Auftreten von Fallenzuständen in Zusammenhang mit solchen Ladungstransferprozessen zu minimieren und damit die elektronischen Bauteileigenschaften zu verbessern. Für Zinkphthalocyanin (ZnPc) und dem ihm eigenen Polymorphismus konnte der Einfluss der molekularen Packung auf angeregte Zustände untersucht werden, ohne die chemische Struktur zu verändern. Durch die Kombination von Strukturuntersuchungen, optischer Absorptions- und Emissionsspektroskopie und Franck-Condon Modellierungen wurde der Ursprung der Emission der angeregten Zustände in der strukturellen \(\alpha \) und \(\beta \)Phase über einen großen Temperaturbereich von 4 K bis 300 K offen gelegt. Mithilfe der erlangten Einsichten wurde die Kinetik des \(\alpha \rightarrow \beta\) Phasenübergangs erster Ordnung charakterisiert und zur Herstellung von dual-lumineszenten OLEDs verwendet. KW - Organischer Halbleiter KW - Phthalocyanin KW - Pentacen KW - Ladungstransfer KW - Optoelektronik KW - Exziton KW - Charge-Transfer KW - Donor-Acceptor Interface Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244019 ER - TY - THES A1 - Süß, Jasmin T1 - Theoretische Untersuchungen an molekularen Aggregaten: 2D-Spektroskopie und Exzitonendynamik T1 - Theoretical studies on molecular aggregates: 2D spectroscopy and exciton dynamics N2 - Diese Dissertation beschäftigt sich mit der Exzitonendynamik molekularer Aggregate, die nach Mehrphotonen-Anregung auf ultrakurzer Zeitskala stattfindet. Hierbei liegt der Fokus auf der Charakterisierung der Exziton-Exziton-Annihilierung (EEA) mithilfe von zweidimensionaler optischer Spektroskopie fünfter Ordnung. Dazu werden zwei verschiedene Modellsysteme implementiert: Das elektronische Homodimer und das elektronische Homotrimer-Modell, wobei Letzteres eine Erweiterung des Dimer-Modells darstellt. Die Kopplung des quantenmechanischen Systems an die Umgebung wird mithilfe des Quantum-Jump-Ansatzes umgesetzt. Besonderes Interesse kommt der Analyse des Signals fünfter Ordnung in Abhängigkeit der Populationszeit T zu. Anhand des Dimer-Modells als kleinstmögliches Aggregat lassen sich bereits gute Vorhersagen auch über das Verhalten größerer molekularer Aggregate treffen. Der Zerfall des oszillierenden Signals für lange Populationszeiten korreliert mit der EEA. Dies zeigt, dass die zweidimensionale optische Spektroskopie genutzt werden kann, um den Annihilierungsprozess zu charakterisieren. Innerhalb des Modells des Dimers wird weiterhin der Einfluss der Intraband-Relaxation untersucht. Zunehmende Intraband-Relaxation verhindert den Austausch zwischen den lokalen Zuständen, der essentiell für den Annihilierungsprozess ist, und die EEA wird blockiert. Das elektronische Trimer-Modell erweitert das Dimer-Modell um eine Monomereinheit. Somit befinden sich die Exzitonen im Anschluss an die Anregung nicht mehr unvermeidlich nebeneinander. Es gibt somit eine Konfiguration, bei der sich die Exzitonen zunächst zueinander bewegen müssen, bevor die Startbedingung des Annihilierungsprozesses gegeben ist. Dieser zusätzliche Schritt wird auch Exzitonendiffusion genannt. Die Ergebnisse dieser Arbeit legen nahe, dass das erwartete Verhalten nur zu sehr kurzen Zeiten im Femtosekundenbereich auftritt und somit die Zeitskala der Exzitonendiffusion im Falle des Trimers nicht sichtbar wird. Es bedarf demnach eines größeren Modellsystems, bei dem sich der Effekt der zeitverzögert eintretenden EEA deutlich in der Zerfallsdynamik manifestieren kann. N2 - This work addresses the exciton dynamics of molecular aggregates which occur after femtosecond multi-photon laser excitation. Thereby, the focus is on the characterization of exciton-exciton annihilation (EEA) via fifth order two dimensional optical spectroscopy. Two model systems are employed: the electronic homodimer model and the electronic homotrimer model, where the latter one is an extension of the dimer system. The systems are coupled to the surrounding. In the numerical calculation, the system-bath interaction is realized via the quantum jump approach. Particular attention is payed to energy-integrated spectra as a function of the population time T. The dimer is the smallest molecular aggregate, but it is a good reference system if larger aggregates are supposed to be understood. The decay of the oscillating fifth-order signal corresponds to the EEA. This indicates that two dimensional optical spectroscopy can be used to monitor the annihilation process. Furthermore, the effect of intraband relaxation is studied within the dimer model. The results display that increasing the intraband relaxation inhibits the population transfer between the localized states of the system. This blocks the EEA. In extending the dimer model system by one monomer unit, one obtains the electronic trimer model system. Within this model, the situation after excitation differs from the one in the dimer model. The excitons do not exclusively reside next to each other so that EEA is immediately possible. In that case, the excitons have to diffuse to each other before they eventually meet and the annihilation process starts. The results suggest that the expected properties are merely correct at very short times around a few femtoseconds. Within the trimer model, the additional time scale for the exciton diffusion doesn't show in the results. In particular, it requires a larger model system for the effect of the delayed EEA to be seen in the regarded signal. KW - Molekulardynamik KW - Quantenmechanik KW - Spektroskopie KW - Exziton KW - Exziton-Exziton-Annihilierung KW - Quantum-Jump-Ansatz KW - Wellenpaketdynamik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247136 ER -