TY - THES A1 - Büchner, Claudia Nadine T1 - Single molecule studies of DNA lesion search and recognition strategies T1 - Einzel-Molekül-Studien von Strategien zur DNS-Schadenssuche und -erkennung N2 - The integrity of our genome is continuously endangered by DNA damaging factors. Several cellular mechanisms have evolved to recognize and remove different types of DNA lesions. Despite the wealth of information on the three-dimensional structure and the catalytic mechanism of DNA repair enzymes, the essential process of target site search and identification remains more elusive. How can a small number of repair proteins find and detect the rare sites of damage rapidly and efficiently over an excess of millions of undamaged bases? To address this pivotal question in DNA repair, I focused on the central players from the two DNA damage excision repair pathways in my studies: nucleotide excision repair (NER) and base excision repair (BER). As examples for completely different approaches of damage search, recognition and verification, I compared the NER protein Xeroderma pigmentosum group D (XPD) with the BER proteins human thymine DNA glycosylase (hTDG) and human 8-oxoguanine glycosylase (hOgg1). In particular, the single molecule approach of atomic force microscopy (AFM) imaging and complementary biochemical and biophysical techniques were applied. I established a simple, optimized preparation approach, which yields homogeneous and pure samples of long (several hundreds to thousands of base pairs) DNA substrates suitable for the AFM studies with DNA repair proteins. Via this sample preparation, a single target site of interest can be introduced into DNA at a known position, which allows separate analysis of specific protein-DNA complexes bound to the lesion site and nonspecific complexes bound to non-damaged DNA. The first part of the thesis investigates the XPD protein involved in eukaryotic NER. In general, the NER mechanism removes helix-distorting lesions – carcinogenic UV light induced photoproducts, such as cyclobutane pyrimidine dimers (CPDs) as well as bulky DNA adducts. The 5’-3’ helicase XPD has been proposed to be one of the key players in DNA damage verification in eukaryotic NER, which is still a matter of hot debate. In the studies, I focused on XPD from the archaeal species Thermoplasma acidophilum (taXPD), which shares a relatively high sequence homology with the sequence of the human protein and may serve as a good model for its eukaryotic counterpart. Based on AFM experiments and accompanying DNA binding affinity measurements with the biosensor technology Biolayer Interferometry (BLI), a clear role of XPD in damage verification was deciphered. Specifically, the data suggested that the ATP-dependent 5’-3’ helicase activity of XPD was blocked by the presence of damage leading to stalled XPD-DNA damage verification complexes at the lesion sites. Successful damage verification led to ATP-dependent conformational changes visible by a significant transition in DNA bend angles from ~ 50° to ~ 65° at the site of the bound protein. Remarkably, this DNA bend angle shift was observed both in the presence of ATP and ATPγs (non-hydrolyzable ATP analog) indicating that ATP-binding instead of ATP hydrolysis was sufficient to induce repair competent conformational changes of XPD. Most importantly, detailed protein binding position and DNA bend angle analyses revealed for the first time that XPD preferably recognizes a bulky fluorescein lesion on the translocated strand, whereas a CPD lesion is preferentially detected on the opposite, non-translocated strand. Despite the different recognition strategies for both types of damages, they share a common verification complex conformation, which may serve as a signal for the recruitment of further NER factors. In the second part of the thesis, AFM imaging and a 2-Aminopurine fluorescence-based base-flipping assay were combined to investigate damage search and recognition by DNA glycosylases in BER. Exemplarily, I chose to study hTDG as a representative of the vast glycosylase family. hTDG excises thymine and uracil from mutagenic G:T and G:U mispairs contributing to cancer and genetic disease. The AFM data suggested that hTDG uses the intrinsic flexibility of G:T and G:U wobble pairs for initial damage sensing, while scanning DNA as a search complex (SC, slightly bent DNA). Remarkably, hTDG has been indicated to continuously switch between the search and interrogation conformation (IC, stronger bent DNA) during damage search. In the IC, target bases are interrogated by extrahelical base flipping, which is facilitated by protein-induced DNA bending and enhanced DNA flexibility at mismatches. AFM and fluorescence analyses revealed that the flipped base is stabilized via hTDG’s arginine finger. Correct target bases are perfectly stabilized within the enzyme’s catalytic pocket resulting in prolonged residence time and enhanced excision probability. To test for the generalizability of the proposed hTDG damage search model to BER glycosylases, identical studies were performed with a second glycosylase, hOgg1. The data on hOgg1, which removes structurally more stable 8-oxoguanine lesions, supported the hypothesis developed for lesion recognition by hTDG as a common strategy employed by BER glycosylases N2 - Die Stabilität des menschlichen Genoms wird durch DNA-schädigende Faktoren ständig bedroht. Mehrere zelluläre Mechanismen haben sich entwickelt, um verschiedene Typen von DNS-Schädigungen zu erkennen und zu entfernen. Obwohl zahlreiche und vielfältige Informationen über die drei-dimensionalen Strukturen und katalytischen Mechanismen von DNS-Reparaturenzymen vorhanden sind, ist der essentielle Prozess der Suche und Identifikation von Läsionen kaum verstanden. Wie ist es möglich, dass eine kleine Anzahl an Reparaturenzymen die seltenen DNS-Schadensstellen unter Millionen von unbeschädigten Basen schnell und effizient finden kann? Diese zentrale Frage der DNS-Reparatur habe ich mit Hilfe von Schlüssel-Proteinen aus zwei verschiedenen DNS-Reparaturmechanismen untersucht, zum einen aus der Nukleotid- (NER) und zum anderen aus der Basenexzisionsreparatur (BER). Als Beispiel für zwei völlig unterschiedliche Ansätze zur Schadenssuche, -erkennung und -verifizierung, habe ich das NER Protein Xeroderma pigmentosum group D (XPD) mit den BER Proteinen humane Thymin DNA Glykosylase (hTDG) und der humanen 8-Oxoguanin Glykosylase (hOgg1) verglichen. Im Detail habe ich Einzelmoleküluntersuchungen mittels Rasterkraftmikroskopie (engl. ‚atomic force microscopy‘, AFM) und unterstützenden biochemischen und biophysikalischen Techniken angewandt. Ich habe eine einfache und optimierte Probenaufbereitungsmethode etabliert, welche es ermöglicht homogene, hochreine und lange (mehrere 100 Basenpaare) DNS-Substrate herzustellen, die für AFM Studien mit DNS-Reparaturenzymen geeignet sind. Mit Hilfe dieser Probenherstellungs-Technik kann eine einzelne, gewünschte Zielstelle an einer bestimmten Position in diese DNS-Substrate eingefügt werden. Die Verwendung dieser speziellen DNS-Substrate erlaubt eine separate Analyse von spezifischen Protein-DNS-Komplexen, die an bestimmte Läsionen gebunden sind, und unspezifischen Komplexen mit unbeschädigter DNS. Der erste Teil dieser Arbeit behandelt die Rolle von XPD in der eukaryotischen NER. Der NER Mechanismus entfernt DNS-Schäden, welche die Helix-Struktur der DNS verzerren. Das sind zum einen krebserregende UV-Schäden, wie zum Beispiel Cyclobutan-Pyrimidindimere (CPDs) sowie sperrige DNS-Addukte. Die 5‘-3‘ Helikase XPD wird als eines der Schlüsselenzyme bei der Schadens-Verifizierung gehandelt, was jedoch derzeit noch umstritten ist. In meinen Studien habe ich mich mit dem XPD-Protein aus dem archäischen Organismus Thermoplasma acidophilum (taXPD) beschäftigt. Dieses weist eine relativ große Sequenzhomologie mit dem humanen Protein auf und stellt daher ein gutes Modell für das eukaryotische XPD dar. Auf Grund von AFM Experimenten und DNS-Bindungsaffinitätsmessungen mittels Biolayer-Interferometrie (BLI), konnte XPD eine eindeutige Rolle in der DNS-Schadensverifizierung zugesprochen werden. Meine Ergebnisse zeigten, dass die ATP-abhängige Helikase-Aktivität von XPD durch die Anwesenheit eines DNA-Schadens gehemmt wird, was zur Schadensverifizierung und Bildung von XPD-DNA-Komplexen führt, die von der Schadensstelle ‚aufgehalten‘ wurden. Eine erfolgreiche Schadensverifizierung führt daraufhin zu ATP-abhängigen Konformationsänderungen, die sich in einer Änderung des DNA-Biegewinkels von ~ 50° zu ~ 65° an der Stelle des gebunden Proteins äußern. Es ist bemerkenswert, dass diese Änderung des DNS-Biegewinkels sowohl mit ATP und als auch mit ATPγs (nicht-hydrolysierbares ATP Analog) beobachtet wurde. Dies zeigt, dass bereits die Bindung und anstatt der Hydrolyse von ATP ausreicht, um reparaturkompetente Konformationsänderungen durch XPD zu veranlassen. Darüber hinaus haben meine detaillierten Proteinbindeposition- und DNS-Biegewinkelanalysen haben zum ersten Mal gezeigt, dass XPD sperrige Fluoreszein-Schäden vor allem auf dem translozierten DNS-Strang erkennt, während CPD-Schäden vor allem auf dem gegenüberliegendem nicht-translozierten Strang erkannt werden. Trotz dieser unterschiedlichen Erkennungsstrategien für die zwei Schadenstypen, nehmen die beiden Schäden die gleiche Konformation im Schadensverifizierungs-Komplex an, was als Signal für die Rekrutierung weiterer NER Faktoren dienen könnte. Im zweiten Teil meiner Arbeit kombinierte ich AFM-Experimente mit einem sogenannten ‚base flipping' Test, der auf der Fluoreszenz von 2-Aminopurine basiert, um die Schadenssuche und -erkennung durch DNS-Glykosylasen im BER-Mechanismus zu untersuchen. Als Beispiel für die weitläufige Familie der Glykosylasen wählte ich hTDG aus. hTDG schneidet Thymin und Uracil aus mutagenen G:T und G:U Fehlpaarungen heraus. Die AFM Daten zeigten, dass sich hTDG für die initiale Schadenserkennung die intrinsische Flexibilität in G:T und G:U Paaren zu Nutze macht, während die DNA als Suchkomplex geprüft wird (engl. ‚search complex‘, SC, leicht gebogene DNS-Struktur). Erstaunlicherweise scheint hTDG dabei kontinuierlich zwischen einem Such- und Prüfkomplex umzuschalten (engl. ‚interrogation complex‘, IC, stärkere Biegung der DNS). Im IC werden Basen durch „flippen“ außerhalb der DNS-Helix geprüft, was durch die Protein induzierte DNS-Biegung und die erhöhte Flexibilität von Fehlpaarungen in der DNS ermöglicht wird. Die Analyse von AFM- und Fluoreszenzexperimenten brachte zum Vorschein, dass die ‚geflippte‘ Base durch den Arginin-Finger von hTDG stabilisiert wird. Die korrekten Zielbasen passen exakt in die katalytische Tasche des Enzyms und werden dort perfekt stabilisiert, was zu einer längeren Aufenthaltsdauer führt, die wiederum die Wahrscheinlichkeit erhöht, dass die Base herausgeschnitten wird. Um zu testen, ob das für hTDG vorgeschlagene Schadenssuchmodel auch allgemein für andere BER Glykosylasen gilt, habe ich die gleichen Experimente mit einer weiteren Glykosylase (hOgg1) durchgeführt, ein Protein das strukturell stabilere 8-Oxoguanin-Schäden entfernt. Die Daten für hOgg1 untermauern die Hypothese, die für die Schadenssuche von hTDG erarbeitet wurde, als eine gemeinsame Strategie von BER Glykosylasen. KW - Rasterionenmikroskop KW - DNS-Schädigung KW - Single-molecule KW - Atomic-force-microscopy KW - DNA lesion KW - Einzel-Molekül KW - Rasterkraft-Mikroskopie KW - DNS-Schaden Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111886 ER -