TY - THES A1 - Stieb, Sara Mae T1 - Synaptic plasticity in visual and olfactory brain centers of the desert ant Cataglyphis T1 - Synaptische Plastizität visueller und olfaktorischer Gehirnzentren der Wüstenameise Cataglyphis N2 - Wüstenameisen der Gattung Cataglyphis wurden zu Modellsystemen bei der Erforschung der Navigationsmechanismen der Insekten. Ein altersabhängiger Polyethismus trennt deren Kolonien in Innendienst-Arbeiterinnen und kurzlebige lichtausgesetzte Fourageure. Nachdem die Ameisen in strukturlosem oder strukturiertem Gelände bis zu mehrere hundert Meter weite Distanzen zurückgelegt haben, können sie präzise zu ihrer oft unauffälligen Nestöffnung zurückzukehren. Um diese enorme Navigationsleistung zu vollbringen, bedienen sich die Ameisen der sogenannten Pfadintegration, welche die Informationen aus einem Polarisationskompass und einem Entfernungsmesser verrechnet; des Weiteren orientieren sie sich an Landmarken und nutzen olfaktorische Signale. Im Fokus dieser Arbeit steht C. fortis, welche in Salzpfannen des westlichen Nordafrikas endemisch ist - einem Gebiet, welches vollständig von anderen Cataglyphis Arten gemieden wird. Die Tatsache, dass Cataglyphis eine hohe Verhaltensflexibilität aufweist, welche mit sich drastisch ändernden sensorischen Anforderungen verbunden ist, macht diese Ameisen zu besonders interessanten Studienobjekten bei der Erforschung synaptischer Plastizität visueller und olfaktorischer Gehirnzentren. Diese Arbeit fokussiert auf plastische Änderungen in den Pilzkörpern (PK) - sensorischen Integrationszentren, die mutmaßlich an Lern- und Erinnerungsprozessen, und auch vermutlich am Prozess des Landmarkenlernens beteiligt sind - und auf plastische Änderungen in den synaptischen Komplexen des Lateralen Akzessorischen Lobus (LAL) – einer bekannten Relaisstation in der Polarisations-Leitungsbahn. Um die strukturelle synaptische Plastizität der PK in C. fortis zu quantifizieren, wurden mithilfe immunozytochemischer Färbungen die prä- und postsynaptischen Profile klar ausgeprägter synaptischer Komplexe (Mikroglomeruli, MG) der visuellen Region (Kragen) und der olfaktorischen Region (Lippe) der PK-Kelche visualisiert. Die Ergebnisse legen dar, dass eine Volumenzunahme der PK-Kelche während des Übergangs von Innendiensttieren zu Fourageuren von einer Abnahme der MG-Anzahl im Kragen und, mit einem geringeren Anteil, in der Lippe - dieser Effekt wird als Pruning bezeichnet - und einem gleichzeitigen Auswachsen an Dendriten PK-intrinsischer Kenyonzellen begleitet wird. Im Dunkeln gehaltene Tiere unterschiedlichen Alters zeigen nach Lichtaussetzung den gleichen Effekt und im Dunkel gehaltene, den Fourageuren altersmäßig angepasste Tiere weisen eine vergleichbare MG-Anzahl im Kragen auf wie Innendiensttiere. Diese Ergebnisse deuten darauf hin, dass die immense strukturelle synaptische Plastizität in der Kragenregion der PK-Kelche hauptsächlich durch visuelle Erfahrungen ausgelöst wird und nicht ausschließlich mit Hilfe eines internen Programms abgespielt wird. Ameisen, welche unter Laborbedingungen bis zu einem Jahr alt wurden, zeigen eine vergleichbare Plastizität. Dies deutet darauf hin, dass das System über die ganze Lebensspanne eines Individuums flexibel bleibt. Erfahrene Fourageure wurden in Dunkelheit zurückgeführt, um zu untersuchen, ob die lichtausgelöste synaptische Umstrukturierung reversibel ist, doch ihre PK zeigen nur einige die Zurückführung widerspiegelnde Plastizitätsausprägungen, besonders eine Änderung der präsynaptischen Synapsinexprimierung. Mithilfe immunozytochemischer Färbungen, konfokaler Mikroskopie und 3D-Rekonstruktionen wurden die prä- und postsynaptischen Strukturen synaptischer Komplexe des LAL in C. fortis analysiert und potentielle strukturelle Änderungen bei Innendiensttieren und Fourageuren quantifiziert. Die Ergebnisse zeigen, dass diese Komplexe aus postsynaptischen, in einer zentralen Region angeordneten Fortsätzen bestehen, welche umringt sind von einem präsynaptischen kelchartigen Profil. Eingehende und ausgehende Trakte wurden durch Farbstoffinjektionen identifiziert: Projektionsneurone des Anterioren Optischen Tuberkels kontaktieren Neurone, welche in den Zentralkomplex ziehen. Der Verhaltensübergang wird von einer Zunahme an synaptischen Komplexen um ~13% begleitet. Dieser Zuwachs suggeriert eine Art Kalibrierungsprozess in diesen potentiell kräftigen synaptischen Kontakten, welche vermutlich eine schnelle und belastbare Signalübertragung in der Polarisationsbahn liefern. Die Analyse von im Freiland aufgenommener Verhaltenweisen von C. fortis enthüllen, dass die Ameisen, bevor sie mit ihrer Fouragiertätigkeit anfangen, bis zu zwei Tage lang in unmittelbarer Nähe des Nestes Entdeckungsläufe unternehmen, welche Pirouetten ähnliche Drehungen beinhalten. Während dieser Entdeckungsläufe sammeln die Ameisen Lichterfahrung und assoziieren möglicherweise den Nesteingang mit spezifischen Landmarken oder werden anderen visuellen Informationen, wie denen des Polarisationsmusters, ausgesetzt und adaptieren begleitend ihre neuronalen Netzwerke an die bevorstehende Herausforderung. Darüber hinaus könnten die Pirouetten einer Stimulation der an der Polarisationsbahn beteiligten neuronalen Netzwerke dienen. Videoanalysen legen dar, dass Lichtaussetzung nach drei Tagen die Bewegungsaktivität der Ameisen heraufsetzt. Die Tatsache, dass die neuronale Umstrukturierung in visuellen Zentren wie auch die Veränderungen im Verhalten im selben Zeitrahmen ablaufen, deutet darauf hin, dass ein Zusammenhang zwischen struktureller synaptischer Plastizität und dem Verhaltensübergang von der Innendienst- zur Fouragierphase bestehen könnte. Cataglyphis besitzen hervorragende visuelle Navigationsfähigkeiten, doch sie nutzen zudem olfaktorische Signale, um das Nest oder die Futterquelle aufzuspüren. Mithilfe konfokaler Mikroskopie und 3D-Rekonstruktionen wurden potentielle Anpassungen der primären olfaktorischen Gehirnzentren untersucht, indem die Anzahl, Größe und räumliche Anordnung olfaktorischer Glomeruli im Antennallobus von C. fortis, C. albicans, C. bicolor, C. rubra, und C. noda verglichen wurde. Arbeiterinnen aller Cataglyphis-Arten haben eine geringere Glomeruli-Anzahl im Vergleich zu denen der mehr olfaktorisch-orientierten Formica Arten - einer Gattung nah verwandt mit Cataglyphis - und denen schon bekannter olfaktorisch-orientierter Ameisenarten. C. fortis hat die geringste Anzahl an Glomeruli im Vergleich zu allen anderen Cataglyphis-Arten und besitzt einen vergrößerten Glomerulus, der nahe dem Eingang des Antennennerves lokalisiert ist. C. fortis Männchen besitzen eine signifikant geringere Glomeruli-Anzahl im Vergleich zu Arbeiterinnen und Königinnen und haben einen hervorstechenden Männchen-spezifischen Makroglomerulus, welcher wahrscheinlich an der Pheromon-Kommunikation beteiligt ist. Die Verhaltensrelevanz des vergrößerten Glomerulus der Arbeiterinnen bleibt schwer fassbar. Die Tatsache, dass C. fortis Mikrohabitate bewohnt, welche von allen anderen Cataglyphis Arten gemieden werden, legt nahe, dass extreme ökologische Bedingungen nicht nur zu Anpassungen der visuellen Fähigkeiten, sondern auch des olfaktorischen Systems geführt haben. Die vorliegende Arbeit veranschaulicht, dass Cataglyphis ein exzellenter Kandidat ist bei der Erforschung neuronaler Mechanismen, welche Navigationsfunktionalitäten zugrundeliegen, und bei der Erforschung neuronaler Plastizität, welche verknüpft ist mit der lebenslangen Flexibilität eines individuellen Verhaltensrepertoires. N2 - Desert ants of the genus Cataglyphis have become model systems for the study of insect navigation. An age-related polyethism subdivides their colonies into interior workers and short-lived light-exposed foragers. While foraging in featureless and cluttered terrain over distances up to several hundred meters, the ants are able to precisely return back to their often inconspicuous nest entrance. They accomplish this enormous navigational performance by using a path integration system - including a polarization compass and an odometer - as their main navigational means in addition to landmark-dependent orientation and olfactory cues. C. fortis, being the focus of the present thesis, is endemic to the salt flats of western North Africa, which are completely avoided by other Cataglyphis species. The fact that Cataglyphis ants undergo a behavioral transition associated with drastically changing sensory demands makes these ants particularly interesting for studying synaptic plasticity in visual and olfactory brain centers. This thesis focuses on plastic changes in the mushroom bodies (MBs) - sensory integration centers supposed to be involved in learning and memory presumably including landmark learning - and in synaptic complexes belonging to the lateral accessory lobe (LAL) known to be a relay station in the polarization processing pathway. To investigate structural synaptic plasticity in the MBs of C. fortis, synaptic complexes (microglomeruli, MG) in the visual (collar) and olfactory (lip) input regions of the MB calyx were immunolabeled and their pre- and postsynaptic profiles were quantified. The results show that a volume increase of the MB calyx during behavioral transition is associated with a decrease of MG number - an effect called pruning - in the collar and, less pronounced, in the lip that goes along with dendritic expansion in MB intrinsic Kenyon cells. Light-exposure of dark-reared ants of different age classes revealed similar effects and dark-reared ants age-matched to foragers had MG numbers comparable to those of interior workers. The results indicate that the enormous structural synaptic plasticity of the MB calyx collar is primarily driven by visual experience rather than by an internal program. Ants aged artificially for up to one year expressed a similar plasticity indicating that the system remains flexible over the entire life-span. To investigate whether light-induced synaptic reorganization is reversible, experienced foragers were transferred back to darkness with the result that their MBs exhibit only some reverse-type characteristics, in particular differences in presynaptic synapsin expression. To investigate the structure of large synaptic complexes in the LAL of C. fortis and to detect potential structural changes, pre- and postsynaptic profiles in interior workers and foragers were immunolabeled and quantified by using confocal imaging and 3D-reconstruction. The results show that these complexes consist of postsynaptic processes located in a central region that is surrounded by a cup-like presynaptic profile. Tracer injections identified input and output tracts of the LAL: projection neurons from the anterior optic tubercle build connections with neurons projecting to the central complex. The behavioral transition is associated with an increase by ~13% of synaptic complexes suggesting that the polarization pathway may undergo some sort of calibration process. The structural features of these synaptic contacts indicate that they may serve a fast and reliable signal transmission in the polarization vision pathway. Behavioral analyses of C. fortis in the field revealed that the ants perform exploration runs including pirouette-like turns very close to the nest entrance for a period of up to two days, before they actually start their foraging activity. During these orientation runs the ants gather visual experience and might associate the nest entrance with specific landmarks or get entrained to other visual information like the polarization pattern, and, concomitantly adapt their neuronal circuitries to the upcoming challenges. Moreover, the pirouettes may serve to stimulate and calibrate the neuronal networks involved in the polarization compass pathway. Video recordings and analyses demonstrate that light experience enhanced the ants’ locomotor activity after three days of exposure. The fact that both the light-induced behavioral and neuronal changes in visual brain centers occur in the same time frame suggests that there may be a link between structural synaptic plasticity and the behavioral transition from interior tasks to outdoor foraging. Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities, but also employ olfactory cues for detecting nest and food sites. Using confocal imaging and 3D-reconstruction, potential adaptations in primary olfactory brain centers were analyzed by comparing the number, size and spatial arrangement of olfactory glomeruli in the antennal lobe of C. fortis, C. albicans, C. bicolor, C. rubra, and C. noda. Workers of all Cataglyphis species have smaller numbers of glomeruli compared to those of more olfactory-guided Formica species - a genus closely related to Cataglyphis - and to those previously found in other olfactory-guided ant species. C. fortis has the lowest number of glomeruli compared to all other species, but possesses a conspicuously enlarged glomerulus that is located close to the antennal nerve entrance. Males of C. fortis have a significantly smaller number of glomeruli compared to female workers and queens and a prominent male-specific macroglomerulus likely to be involved in sex pheromone communication. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system. The present thesis demonstrates that Cataglyphis is an excellent candidate for studying the neuronal mechanisms underlying navigational features and for studying neuronal plasticity associated with the ant’s lifelong flexibility of individual behavioral repertoires. KW - Neuroethologie KW - Plastizität KW - Cataglyphis KW - Visuelles System KW - Soziale Insekten KW - Synaptische Plastizität KW - Verhaltenplastizität KW - Pilzkörper KW - Mikroglomeruli KW - Antennallobus KW - synaptic plasticity KW - behavioral maturation KW - mushroom body KW - microglomeruli KW - antennal lobe Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85584 ER - TY - THES A1 - Brill, Martin Fritz T1 - Processing and plasticity within the dual olfactory pathway in the honeybee brain T1 - Verarbeitung und Plastizität in der dualen olfaktorischen Bahn im Gehirn der Honigbiene N2 - In their natural environment animals face complex and highly dynamic olfactory input. This requires fast and reliable processing of olfactory information, in vertebrates as well as invertebrates. Parallel processing has been shown to improve processing speed and power in other sensory systems like auditory or visual. In the olfactory system less is known about olfactory coding in general and parallel processing in particular. With its elaborated olfactory system and due to their specialized neuroanatomy, honeybees are well-suited model organism to study parallel olfactory processing. The honeybee possesses a unique neuronal architecture - a dual olfactory pathway. Two mirror-imaged output projection neuron (PN) pathways connect the first olfactory processing stage, the antennal lobe (analog to the vertebrates olfactory bulb, OB), with the second, the mushroom body (MB) known to be involved in orientation and learning and memory, and the lateral horn (LH). The medial antennal lobe-protocerebral tract (m-APT) first innervates the MB and thereafter the LH, while the other, the lateral-APT (l-APT) projects in opposite direction. The neuroanatomy and evolution of these pathways has been analyzed, yet little is known about its physiology. To analyze the function of the dual olfactory pathway a new established recording method was designed and is described in the first chapter of this thesis (multi-unit-recordings). This is now the first time where odor response from several PNs of both tracts is recorded simultaneously and with high temporal precision. In the second chapter the PN odor responses are analyzed. The major findings are: both tracts responded to all tested odors but with differing characteristics. Since recent studies describe the input to the two tracts being rather similar, the results now indicate differential odor processing along the tracts, therefore this is a good indicator for parallel processing. PNs of the m-APT process odors in a sparse manner with delayed response latencies, but with high odor-specificity. PNs of the l-APT in contrast respond to several odor stimuli and respond in general faster. In some PN originating from both tracts, characteristics of odor-identity coding via response latencies were found. Analyzing the over-all dynamic range of the PNs both l- and m-APT PNs were tested over a large odor concentration range (10-6 to 10-2) (3. chapter). The PNs responded with linear and non-linear correlation of the response strength to the odor concentration. In most cases the l-APT is comparatively more sensitive to low odor concentrations. Response latency decreases with increasing odor concentration in both tracts. Alternative coding principles and elaboration on the hypothesis whether the dual olfactory pathway may contribute coincidental innervation to the next higher-order neurons, the Kenyon cells (KC), is subject of the 4. chapter. Cross-correlations and synchronous responses of both tracts show that in principle odors may be coded via temporal coding. Results suggest that odor processing is enhanced if both tracts contribute to olfactory coding together. In another project the distribution of the inhibitory neurotransmitter GABA (gamma-aminobutyric acid) was measured in the bee’s MB during adult maturation (5. chapter). GABAergic inhibition is of high importance in odor coding. An almost threefold decrease in the total amount of GABAergic innervation was found during adult maturation in the l- and m-APT target region, in particular at the change in division of labor during the transition from a young nurse bee to an older forager bee. The results fit well into the current understanding of brain development in the honeybee and other social insects during adult maturation, which was described as presynaptic pruning and KC dendritic outgrowth. Combining anatomical and functional properties of the bee’s dual olfactory pathway suggests that both rate and temporal coding are implemented along two parallel streams. Comparison with recent work on analog output pathways of the vertebrate’s OB indicates that parallel processing of olfactory information may be a common principle across distant taxa. N2 - In ihrem natürlichen Lebensraum sind Lebewesen mit komplexen und hoch dynamischen olfaktorischen Reizen konfrontiert, was eine schnelle und zuverlässige Duft-Verarbeitung sowohl bei Insekten als auch bei Wirbeltieren erfordert. Im visuellen oder auditorischen System wird sensorischer Eingang durch Parallel-Verarbeitung schneller und effektiver an höhere Gehirnzentren übertragen und verarbeitet. Im olfaktorischen System ist generell und im speziellen über Parallel-Verarbeitung noch wenig bekannt. Die Honigbiene stellt jedoch mit ihrer hoch spezialisierten Duftwahrnehmung und ihrem Duft und Pheromon gesteuerten Verhalten aufgrund ihrer Neuroanatomie einen besonderen Modelorganismus für die Erforschung der Duftverarbeitung und insbesondere der olfaktorischen Parallel-Verarbeitung dar. Honigbienen besitzen „duale olfaktorische Bahnen“, die ausschließlich in Hymenopteren (Bienen, Ameisen, Wespen) als Merkmal ausgeprägt sind. Gebildet werden sie aus zwei spiegelbildlichen Projektions-Neuronen (PN) Ausgangs-Trakten, die das erste olfaktorische Verarbeitungs-Zentrum, den Antennal-Lobus (vergleichbar mit dem Olfaktorischen Bulbus der Wirbeltiere, OB) mit sekundären Verarbeitungszentren, dem Pilzkörper (MB) und dem lateralen Horn (LH) verbinden. Der mediale Antennal-Lobusprotocerebrale Trakt (m-APT) innerviert erst den MB und dann das LH, der laterale Trakt (l-APT) projiziert in umgekehrter Reihenfolge. Der MB ist bei Orientierung, Lernen und Gedächtnis involviert, über die Funktion des LH ist in der Biene noch wenig bekannt. Über die Neuroanatomie und Evolution dieser dualen Bahnen wurde viel geforscht, die Funktion und damit ihre Physiologie sind allerdings noch unzureichend aufgeklärt. Die vorliegende Dissertation beschäftigt sich deshalb mit der Duftverarbeitung im Bienengehirn und im Speziellen mit Parallelverarbeitung in der Olfaktorik. Für die Aufklärung wurde eine neu entwickelte und in dieser Dissertation beschriebene Messmethode etabliert (1. Kapitel). Mit Hilfe dieser Messapparatur (Multi-Unit Recordings) ist es jetzt das erste Mal möglich, hoch-zeitaufgelöst simultan aus beiden Trakten mehrere PNs auf unterschiedliche Düfte hin zu untersuchen. Das 2. Kapitel beschäftigt sich eingehender mit der Analyse von Duftanworten der PN. Die Hauptergebnisse sind, dass beide Trakte auf alle getesteten Düfte regieren, dies aber mit unterschiedlichen Charakteristiken tun. Da gezeigt wurde, dass beide Trakte ähnlichen olfaktorischen Eingang erhalten, die Trakte aber Düfte unterschiedlich verarbeiten, stellen diese Ergebnisse ein erstes Indiz für Parallelverarbeitung im olfaktorischen System der Biene dar. M-APT PN reagieren mit Zeitverzögerung und duftspezifisch, d.h. selektiver auf Düfte. Dagegen reagieren l-APT PN vergleichsweise schneller und duft-unspezifischer auf die in dieser Arbeit verwendeten Düfte. In einigen PN beider Trakte wurde gefunden, dass die PN Duft-Identitäten über duftspezifische Antwort-Latenzen abgebildet werden können. Um Aufschluss über die Gesamtdynamik der PN zu gewinnen, wurden l- und m-APT PN Antworten über weite Duftkonzentrationen (10-6 bis 10-2) hin untersucht (3. Kapitel). Die PN reagierten mit linearen und nicht-linearen Korrelationen. Zudem sind in den meisten Fällen l-APT PN bei schwachen Duftkonzentrationen sensitiver. Die Antwort-Latenz ist zur Duftkonzentration in beiden Trakten negativ-proportional. Alternative Kodierungsmöglichkeiten und die Ausarbeitung der Hypothese, dass die dualen Bahnen eine Koinzidenzverschaltung auf die nächst höheren Neurone, die Kenyon Zellen (KC), bilden könnten, wird im 4. Kapitel behandelt. Dazu zeigen Kreuz-Korrelationsanalysen und synchrone Antwortmuster aus beiden Trakten, dass prinzipiell Düfte auch über Zeit-Kodierung verarbeitet werden können. Generell zeigt sich, dass die dualen olfaktorischen Bahnen eine verbesserte Duftkodierung gegenüber einem Trakt gewährleisten. In einem weiteren Ansatz wurde die alterskorrelierte Plastizität der inhibitorischen GABAergen (gamma-Aminobuttersäure) Innervation im Pilzkörper der Biene während der Adult-Reifung bestimmt (5. Kapitel). Inhibition ist für olfaktorische Kodierung sehr wichtig. Eine fast dreifache Reduktion in der Gesamtmenge von GABA wurde während der Adult-Reifung in beiden Zielregionen der dualen olfaktorischen Bahn gleichermaßen gefunden. Dieser Effekt wurde mit einer insgesamt halbierten GABA Innervierung ebenfalls im visuellen Innervationsgebiet des MB gefunden. Die Ergebnisse passen gut in das derzeitige Verständnis von Adultplastizität der Pilzkörper in der Honigbiene, in denen eine Ausdünnung (Pruning) präsynaptischer Endigungen von PN und ein Auswachsen von KC-Dendriten beschrieben wurde. Aus den neuroanatomischen und physiologischen Eigenschaften der dualen olfaktorischen Bahnen lässt sich schlussfolgern, dass Düfte sowohl über Raten- als auch Zeit-Kodierung bis hin zu Koinzidenz-Verschaltungen verarbeitet werden können. Zudem zeigen derzeitige Arbeiten über analoge Ausgangs-Trakte im OB von Wirbeltieren, dass Parallelverarbeitung im olfaktorischen System ein allgemeines Kodierungsprinzip über weit entfernte Taxa zu sein scheint. KW - Tierphysiologie KW - Geruchssinn KW - Nervennetz KW - Nervenzelle KW - Biene KW - Antennallobus KW - antennal lobe KW - olfaction KW - multi-unit recording KW - Insekten KW - Geruch KW - Physiologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85600 ER -