TY - THES A1 - Meza Chincha, Ana Lucia T1 - Catalytic Water Oxidation with Functionalized Ruthenium Macrocycles T1 - Katalytische Wasseroxidation mit funktionalisierten Ruthenium Makrozyklen N2 - In light of the rapidly increasing global demand of energy and the negative effects of climate change, innovative solutions that allow an efficient transition to a carbon-neutral economy are urgently needed. In this context, artificial photosynthesis is emerging as a promising technology to enable the storage of the fluctuating energy of sunlight in chemical bonds of transportable “solar fuels”. Thus, in recent years much efforts have been devoted to the development of robust water oxidation catalysts (WOCs) leading to the discovery of the highly reactive Ru(bda) (bda: 2,2’-bipyridine-6,6’-dicarboxylic acid) catalyst family. The aim of this thesis was the study of chemical and photocatalytic water oxidation with functionalized Ruthenium macrocycles to explore the impact of substituents on molecular properties and catalytic activities of trinuclear macrocyclic Ru(bda) catalysts. A further objective of this thesis comprises the elucidation of factors that influence the light-driven water oxidation process with this novel class of supramolecular WOCs. N2 - Innovative Ansätze zur Ermöglichung eines effizienten Übergangs zur CO2-Neutralität werden angesichts der schnell steigenden Nachfrage nach Energie und der negativen Effekte des Klimawandels dringend gesucht. In diesem Zusammenhang hat das Konzept der künstlichen Photosynthese in den letzten Jahren für besondere Aufmerksamkeit gesorgt. In dieser Hinsicht erscheinen in 2009 erstmals beschriebenen Ru(bda) (bda: 2,2’-bipyridin-6,6’-dicarbonsäure) Wasseroxidationskatalysatoren besonders vielversprechend. Das Ziel dieser Forschungsarbeit war die Untersuchung von funktionalisierten Ruthenium Makrozyklen in der chemischen und photokatalytischen Wasseroxidation, um den Einfluss der Substituenten in den Liganden auf molekulare Eigenschaften und katalytische Aktivitäten der Makrozyklen zu analysieren. Des Weiteren sollten Faktoren identifiziert werden, welche Einfluss auf die Effizienz der Photokatalyse mit dieser neuartigen Klasse von supramolekularen Katalysatoren ausüben. KW - Rutheniumkomplexe KW - Ruthenium complexes KW - Supramolekulare Chemie KW - Katalyse KW - Wasser KW - metallosupramolecular chemistry KW - catalysis KW - water oxidation KW - Oxidation KW - Wasseroxidation KW - Metallosupramolekulare Chemie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209620 ER - TY - THES A1 - Gamache [geb. Rupp], Mira Theresa T1 - Ligand Design for Ru(II) Photosensitizers in Photocatalytic Hydrogen Evolution T1 - Ligandendesign für Ru(II)-Photosensibilisatoren in der photokatalytischen Wasserstoffentwicklung T1 - Conception de ligands pour les photosensibilisateurs de Ru(II) dans l'évolution photocatalytique de l'hydrogène N2 - This thesis investigates different ligand designs for Ru(II) complexes and the activity of the complexes as photosensitizer (PS) in photocatalytic hydrogen evolution. The catalytic system typically contains a catalyst, a sacrificial electron donor (SED) and a PS, which needs to exhibit strong absorption and luminescence, as well as reversible redox behavior. Electron-withdrawing pyridine substituents on the terpyridine metal ion receptor result in an increase of excited-state lifetime and quantum yield (Φ = 74*10-5; τ = 3.8 ns) and lead to complex III-C1 exhibiting activity as PS. While the turn-over frequency (TOFmax) and turn-over number (TON) are relatively low (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS-1), the catalytic system is long-lived, losing only 20% of its activity over the course of 12 days. Interestingly, the heteroleptic design in III-C1 proves to be beneficial for the performance as PS, despite III-C1 having comparable photophysical and electrochemical properties as the homoleptic complex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). Reductive quenching of the excited PS by the SED is identified as rate-limiting step in both cases. Hence, the ligands are designed to be more electron-accepting either via N-methylation of the peripheral pyridine substituents or introduction of a pyrimidine ring in the metal ion receptor, leading to increased excited-state lifetimes (τ = 9–40 ns) and luminescence quantum yields (Φ = 40–400*10-5). However, the more electron-accepting character of the ligands also results in anodically shifted reduction potentials, leading to a lack of driving force for the electron transfer from the reduced PS to the catalyst. Hence, this electron transfer step is found to be a limiting factor to the overall performance of the PS. While higher TOFmax in hydrogen evolution experiments are observed for pyrimidine-containing PS (TOFmax = 300–715 mmolH2 molPS-1 min-1), the longevity for these systems is reduced with half-life times of 2–6 h. Expansion of the pyrimidine-containing ligands to dinuclear complexes yields a stronger absorptivity (ε = 100–135*103 L mol-1 cm-1), increased luminescence (τ = 90–125 ns, Φ = 210–350*10-5) and can also result in higher TOFmax given sufficient driving force for electron transfer to the catalyst (TOFmax = 1500 mmolH2 molPS-1 min-1). When comparing complexes with similar driving forces, stronger luminescence is reflected in a higher TOFmax. Besides thermodynamic considerations, kinetic effects and electron transfer efficiency are assumed to impact the observed activity in hydrogen evolution. In summary, this work shows that targeted ligand design can make the previously disregarded group of Ru(II) complexes with tridentate ligands attractive candidates for use as PS in photocatalytic hydrogen evolution. N2 - In dieser Arbeit werden verschiedene Liganden für Ru(II)-Komplexe und die Aktivität der Komplexe als Photosensibilisatoren (PS) in der photokatalytischen Wasserstoffentwicklung untersucht. Das katalytische System besteht typischerweise aus einem Katalysator, einem Opferelektronendonator (SED) und einem PS, welcher eine starke Absorption und Lumineszenz sowie ein reversibles Redoxverhalten aufweisen sollte. Elektronenziehende Pyridin-Substituenten am Terpyridin-Metallionenrezeptor resultieren in einer Erhöhung der Lebensdauer des angeregten Zustands sowie der Quantenausbeute (Φ = 74*10-5; τ = 3.8 ns), was dazu führt, dass Komplex III-C1 als PS aktiv ist. Während die Wechselzahl (TOFmax) und der Umsatz (TON) relativ niedrig sind (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS 1), ist das katalytische System langlebig und verliert im Laufe von 12 Tagen nur 20% seiner Aktivität. Das heteroleptische Design in III-C1 erweist sich als vorteilhaft für die Leistung als PS, obwohl III-C1 vergleichbare photophysikalische und elektrochemische Eigenschaften besitzt wie der homoleptische Komplex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). In beiden Fällen erweist sich das reduktive Lumineszenzlöschen des angeregten PS durch den SED als geschwindigkeitsbestimmender Schritt. Daher werden die Liganden entweder durch N-Methylierung der peripheren Pyridin-Substituenten oder durch Einführung eines Pyrimidinrings in den Metallionenrezeptor elektronenziehender gestaltet, was zu erhöhten Lebensdauern des angeregten Zustands (τ = 9–40 ns) und Lumineszenzquantenausbeuten (Φ = 40–400*10-5) führt. Der stärker elektronenziehende Charakter der Liganden führt allerdings auch zu anodisch verschobenen Reduktionspotentialen, wodurch die treibende Kraft für den Elektronentransfer vom reduzierten PS zum Katalysator reduziert wird. Daher erweist sich dieser Elektronentransferschritt als ein limitierender Faktor für die Gesamtleistung des PS. Während höhere TOFmax in Wasserstoffproduktionsexperimenten für Pyrimidin-haltige PS beobachtet werden (TOFmax = 300–715 mmolH2 molPS-1 min-1), ist die Langlebigkeit für diese Systeme mit Halbwertszeiten von 2–6 h deutlich reduziert. Die Erweiterung der Pyrimidin-haltigen Liganden zu zweikernigen Komplexen führt zu einem stärkeren Absorptionsvermögen (ε = 100–135*103 L mol-1 cm-1), erhöhter Lumineszenz (τ = 90–125 ns, Φ = 210–350*10-5) und kann bei ausreichender treibender Kraft für den Elektronentransfer zum Katalysator auch zu einer höheren TOFmax führen (TOFmax = 1500 mmolH2 molPS-1 min-1). Beim Vergleich von Komplexen mit ähnlichen treibenden Kräften spiegelt sich die stärkere Lumineszenz in einem höheren TOFmax wider. Es wird angenommen, dass neben thermodynamischen Faktoren auch kinetische Effekte und die Effizienz des Elektronentransfers die beobachtete Aktivität bei der Wasserstoffentwicklung beeinflussen. Zusammenfassend zeigt diese Arbeit, dass gezieltes Ligandendesign die bisher vernachlässigte Gruppe der Ru(II)-Komplexe mit tridentaten Liganden zu attraktiven Kandidaten für den Einsatz als PS in der photokatalytischen Wasserstoffentwicklung machen kann. N2 - Cette thèse étudie la conception de différentes ligands pour les complexes de Ru(II) et leur activité comme photosensibilisateur (PS) dans l'évolution photocatalytique de l'hydrogène. Le système catalytique contient généralement un catalyseur, un donneur d'électron sacrificiel (SED) et un PS, qui doit présenter une forte absorption et luminescence et un comportement redox réversible. Les substituants pyridine attracteurs d'électrons sur le récepteur d'ions métalliques terpyridine entraînent une augmentation de la durée de vie de l'état excité et du rendement quantique (Φ = 74*10-5; τ = 3.8 ns) et permettent au complexe III-C1 de présenter une activité en tant que PS. Bien que la fréquence (TOFmax) et le nombre de cycle catalytique (TON) soient relativement faibles (TOFmax = 57 mmolH2 molPS-1 min 1; TON(44 h) = 134 mmolH2 molPS-1), le système catalytique a une longue durée de vie, ne perdant que 20% de son activité au cours de 12 jours. De manière intéressante, la conception hétérolytique dans III-C1 s'avère être bénéfique pour la performance en tant que PS, malgré des propriétés photophysiques et électrochimiques comparables à celles du complexe homoleptique IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). L'extinction réductive de la PS excitée par le SED est identifiée comme l'étape limitant la vitesse dans les deux cas. Par conséquent, les ligands sont modifiés pour être plus accepteurs d'électrons, soit par N-méthylation des substituants pyridine périphériques, soit par introduction d'un cycle pyrimidine dans le récepteur d'ion métallique, ce qui conduit à une augmentation des durées de vie des états excités (τ = 9–40 ns) et des rendements quantiques de luminescence (Φ = 40–400*10-5). Cependant, le caractère plus accepteur d'électrons des ligands entraîne également des potentiels de réduction décalés anodiquement, ce qui conduit à un manque de force motrice pour le transfert d'électrons du PS réduit au catalyseur. Ainsi, cette étape de transfert d'électrons s'avère être un facteur limitant de la performance globale du PS. Alors que des TOFmax plus élevés dans les expériences d'évolution de l'hydrogène sont observés pour les PS contenant le motif pyrimidine (TOFmax = 300–715 mmolH2 molPS-1 min-1), la longévité de ces systèmes est réduite avec des temps de demi-vie de 2–6 h. L'expansion des ligands contenant le motif pyrimidine en complexes dinucléaires conduit à une absorptivité plus forte (ε = 100–135*103 L mol-1 cm-1), une luminescence accrue (τ = 90–125 ns, Φ = 210–350*10-5) et peut également entraîner un TOFmax plus élevé si la force motrice est suffisante pour le transfert d'électrons vers le catalyseur (1500 mmolH2 molPS-1 min-1). En comparant des complexes avec des forces motrices similaires, une luminescence plus forte se traduit par un TOFmax plus élevé. Outre les considérations thermodynamiques, les effets cinétiques et l'efficacité du transfert d'électrons sont supposés avoir un impact sur l'activité observée dans l'évolution de l'hydrogène. En résumé, ce travail montre que la conception ciblée de ligands peut faire du groupe précédemment négligé des complexes de Ru(II) avec des ligands tridentés des candidats attrayants pour une utilisation comme PS dans l'évolution photocatalytique de l'hydrogène. KW - Fotokatalyse KW - Wasserstofferzeugung KW - Rutheniumkomplexe KW - Photosensibilisator KW - Artificial photosynthesis KW - Ligand design Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246766 N1 - This thesis was conducted as cotutelle-de-thèse between the Universität Würzburg and the Université de Montréal (Canada). ER - TY - THES A1 - Klüh, Katharina T1 - Primary Phosphine Halfsandwich Complexes of Iron and Ruthenium - Synthesis and Hydrophosphination Reactions T1 - Primär-Phosphan-Halbsandwich-Komplexe des Eisens und Rutheniums - Synthese und Hydrophosphinierungsreaktionen N2 - Die Hydrophosphinierung stellt eine wertvolle Synthesemöglichkeit zum Aufbau von primären, sekundären und tertiären Phosphanen dar. In dieser Arbeit wird die Synthese verschiedener Primär-Phosphan-Komplexes des Eisens und Ruthenium beschrieben. Untersucht wurden ihre Reaktivität bezüglich Hydrophosphinierungsreaktionen sowie den Einfluss verschiedener Liganden z.B. bidentate Phosphanliganden und hemilabilen Liganden. N2 - The hydrophosphination reaction offers an important synthesis method for the building of primary, secondary and tertiary phosphines. In this work we report the syntheses of different primary phosphine complexes of iron and ruthenium. Also their reactivity in hydrophosphination reaction and the influence of diverse ligands, for example bidentate phosphine ligand and hemilablie ligand, were studied. KW - Phosphine KW - Eisenkomplexe KW - Rutheniumkomplexe KW - Hydrophosphinierung KW - Phosphan KW - hemilabil KW - Hydrophosphination KW - Phosphine KW - hemilabile Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18603 ER - TY - THES A1 - Würtemberger, Max T1 - Untersuchungen zur Synthese und Reaktivität NHC-substituierter Ruthenium- und Eisen-Komplexe T1 - Investigations of the synthesis and reactivity of NHC substituted ruthenium and iron complexes N2 - Diese Arbeit beschäftigt sich mit Untersuchungen zur Synthese und Reaktivität von Ruthenium(II)- und Eisen(II)-Komplexen welche durch Alkyl-subsituierte N-Heterozyklische-Carben Liganden stabilisiert werden. Ein besonderes Augenmerk liegt hierbei auf dem synthetischen Zugang von Rutheniumverbindungen jenseits der Metathese-Katalysatoren. N2 - This Work is concerned with the inverstigations of the synthesis and reactivity of ruthenium(II) and iron(II) complexes which are sabilised by alkyl-substituted N-heterocyclic carbenes ligands. Particular attention is paid to the synthetic approach towards ruthenium compounds beyond metathesis catalysts. KW - Rutheniumkomplexe KW - Eisenkomplexe KW - Heterocyclische Carbene <-N> KW - Carbenkomplexe KW - Ruthenium KW - Eisen KW - Carben-Komplexe KW - NHC-Komplexe KW - Ruthenium KW - Iron KW - carbene complexes KW - NHC complexes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72032 ER - TY - THES A1 - Schindler, Dorothee T1 - Water Oxidation with Multinuclear Ruthenium Catalysts T1 - Wasseroxidation mit mehrkernigen Ruthenium-Katalysatoren N2 - In terms of the need of environmentally benign renewable and storable energy sources, splitting of water into hydrogen and oxygen by using sunlight is a promising approach. Hereby, water oxidation catalysts (WOCs) are required to perform the water oxidation comprising the transfer of four electrons to provide the reducing equivalents for producing hydrogen. The class of Ru(bda) (bda = 2,2'-bipyridine-6,6'-dicarboxylate) catalysts has proven to be efficient for this reaction. In this thesis, ligand exchange processes in Ru(bda) complexes have been analyzed and the formation of multinuclear macrocyclic WOCs was studied. Based on the knowledge acquired by these studies, new multinuclear cyclic Ru(bda) complexes have been synthesized and their catalytic efficiencies in homogeneous water oxidation have been investigated. Going one step further for setting up functional devices, molecular WOCs have been immobilized on conducting or semiconducting supporting materials. Direct anchoring on carbon nanotubes generated a promising materials for further applications. N2 - Der Klimawandel als die gesellschaftliche Herausforderung des 21. Jahrhunderts ist der Allgemeinheit in den letzten Jahren insbesondere durch Aktivitäten der jüngeren Generation mehr und mehr ins Bewusstsein gerückt. Mit ihrem Engagement in Klimabewegungen machen sie auf die Dringlichkeit aufmerksam, fossile Brennstoffe als Hauptverursacher schädlicher Emissionen zu ersetzen. Angesichts des Bedarfs an umweltfreundlichen erneuerbaren und zugleich speicherbaren Energie¬quellen ist die Erzeugung von Wasserstoff unter Verwendung von Sonnenlicht zur Spaltung von Wasser in seine Bestandteile ein vielversprechender Ansatz (Kapitel 2.1). Die Wasser¬oxidationsreaktion, die die erforderlichen Reduktionsäquivalenten für die Umwandlung von Protonen in molekularen Wasserstoff liefert, umfasst jedoch einen herausfordernden Vier-Elektronen-Transferprozess, der robuste und effiziente Katalysatoren unverzichtbar macht (Kapitel 2.2). In den letzten Jahrzehnten durchgeführte ausführliche Untersuchungen an molekularen Wasser¬oxidations¬katalysatoren (WOCs, engl: water oxidation catalysts) haben gezeigt, dass Katalysatoren, die das katalytisch aktive Ru(bda) Fragment (bda: 2,2'-bipyridin-6,6'-dicarbonsäure) enthalten, eine hohe Effizienz in der Wasseroxidation aufweisen.[41] Basierend auf diesen Erkenntnissen entwickelten Würthner und Mitarbeiter einen supra-molekularen Ansatz, bei dem drei Ru(bda) Einheiten makrozyklisch organisiert werden.[42] Diese makrozyklischen Ru(bda) Komplexe zeigten außerordentlich hohe katalytische Aktivitäten mit bedeutend höherer Umsatzfrequenz (TOF, engl: turnover frequency) und Umsatzzahl (TON, engl: turnover number) sowie einer verbesserten Stabilität des Katalysators im Vergleich zur einkernigen Referenzverbindung Ru(bda)(pic)2.[40] Interessanter¬weise wurde heraus¬gefunden, dass vermutlich ein wasserstoffverbrücktes Wasser¬netzwerk in der Kavität des Makrozyklus für schnelle Protonen-gekoppelte Elektronen-Transfer-Schritte (PCET, engl: protonen-coupled electron transfer) und somit beschleunigte Reaktionsgeschwindigkeiten verantwortlich ist. Darüber hinaus belegten mechanistische Untersuchungen einen Wechsel des katalytischen Weges von einem bimolekularen I2M (Interaktion von zwei M-O Einheiten, engl: interaction of two M-O units) Mechanismus im einkernigen Ru(bda)pic2 Referenzkomplex zu einem mononuklearen WNA (nukleophiler Wasserangriff, engl: water nucleophiilic attack) Mechanismus im dreikernigen makro-zyklischen WOC MC3 (Kapitel 2.3), was letzteren besonders interessant für anwendungs-bezogene Untersuchungen macht. ... KW - Rutheniumkomplexe KW - catalysis KW - Wasser KW - Katalyse KW - Oxidation KW - metallosupramolecular chemistry KW - ruthenium complexes KW - water oxidation KW - Ruthenium Komplexe KW - Metallosupramolekulare Chemie KW - Wasseroxidation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233093 ER -