TY - THES A1 - Böcker, Clemens-Alexander T1 - Intrazelluläre Signaltransduktionsprozesse bei der Öffnung des Perineuriums T1 - Intracellular signaling pathways in permeabilisation of the perineurial barrier N2 - Fragestellung: Experimentelle Ansätze zur selektiven Blockade von nozizeptiven Neuronen sind in vivo stark durch die Diffusionsbarriere des Perineuriums eingeschränkt, die das Vordringen von hydrophilen Substanzen zu ihrem Wirkort verhindert. Entscheidend für diese Barrierefunktion sind Tight Junctions zwischen Perineuralzellen, an deren Ausbildung das Transmembranprotein Claudin-1 beteiligt ist. In Vorarbeiten wurde gezeigt, dass die periphere Injektion einer 10 % NaCl-Lösung zur vorübergehenden Öffnung des Perineuriums führt. Dabei kommt es zur Freisetzung der Matrix-Metalloproteinase 9 (MMP9), die über Interaktion mit dem low density lipoprotein receptor-related protein 1 (LRP-1) Rezeptor eine Konzentrationsabnahme von Claudin-1 bewirkt. Durch perineurale Koinjektion von 10 % NaCl mit dem Opioidagonisten DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-Enkephalin) bzw. Tetrodotoxin ist damit im Verhaltensexperiment ein analgetischer Effekt auszulösen. Beobachtungen an der Blut-Hirn-Schranke konnten eine Öffnung über Interaktion von tPA mit LRP-1 zeigen. In dieser Studie sollten die Barriereöffnung sowie intrazelluläre Signalprozesse, die an der Öffnung des Perineuriums beteiligt sind, unter verschiedenen Bedingungen (hypertone NaCl-Lösung, MMP9 und tPA) charakterisiert werden. Methodik: MMP9, 10 % NaCl-Lösung, tPA oder Erk Inhibitor (PD 98059) wurden mit Hilfe eines Nervenstimulators perineural an den N. ischiadicus von Wistar-Ratten injiziert. Danach wurden zu verschiedenen Zeitpunkten Nerven entnommen, um im Western Blot die Claudin-1 Expression in der Membranfraktion sowie die Phosphorylierung der intrazellulären Signalproteine Erk und Akt darzustellen. Nach perineuraler Injektion von tPA wurden in Schmerzverhaltenstests die Barriere öffnenden Wirkungen und immunhistochemisch und im Western Blot Auswirkungen auf die Konzentration von Claudin-1 und pErk untersucht. Ergebnisse: Nach peripherer Injektion der 10 % NaCl-Lösung war über einen Zeitraum von 5-120 min eine Reduktion von Claudin-1 in der Membranfraktion und eine verstärkte Phosphorylierung von Erk nicht aber von Akt zu beobachten. Die Konzentrationszunahme von pErk wurde dabei nur im Perineurium, nicht im Nerveninneren nachgewiesen. Ebenso führte die periphere Injektion von MMP9 zu reduziertem Claudin-1 und einer verstärkten Phosphorylierung von Erk In Verhaltensexperimenten konnte gezeigt werden, dass die Injektion des Erk-Inhibitors PD98059 dosisabhängig zur Aufhebung der Antinozizeption führte, die nach Gabe von DAMGO in 10 % NaCl zu beobachten war. PD98059 blockierte den Abbau von Claudin-1 nach Injektion von 10 % NaCl. Perineurale Koinjektion von aktivem tPA (als LRP-1 Ligand) und DAMGO ermöglicht ebenfalls antinozizeptive Effekte. Immunhistochemisch und im Western Blot zeigte sich bei verschiedenen Dosierungen von aktivem tPA eine Konzentrationsabnahme von Claudin-1, eine verstärkte Phosphorylierung von Erk war jedoch nicht nachzuweisen. Nach Injektion von enzymatisch inaktiviertem tPA konnte nach einer Stunde keine Claudin-1 Konzentrationsänderung beobachtet werden. Interpretation: Nach Injektion von 10 % NaCl kommt es zur verstärkten Phosphorylierung von Erk, die sich durch eine Interaktion der MMP9 Hemopexin- Domäne (MMP9-PEX) mit dem LRP-1 Rezeptor erklären lässt. Folge dieser Signalprozesse ist eine Konzentrationsabnahme von Claudin-1 und eine erhöhte Permeabilität des Perineuriums. Ähnlich zeigen erste Experimente auch nach Injektion von tPA eine Konzentrationsabnahme von Claudin. Damit bietet LRP-1 einen innovativen Angriffspunkt, um auch in vivo durch Öffnung des Perineuriums neue hydrophile Medikamente zur selektiven Blockade von Schmerzfasern zu nutzen. N2 - Introduction: Approaches for the selective blockade of nociceptive neurons are limited in-vivo by the perineurial barrier, which prevents delivery of hydrophilic drugs to the peripheral nerve. The perineurium is composed of a basal membrane with a layer of perineurial cells and tight junctions limiting paracellular permeability. The tight junction protein claudin-1 is expressed in the perineurium and associated with permeability changes. Perineurial injection of hypertonic saline (HTS) has been used to increase perineurial permeability. Injection of HTS leads to a release of the matrix metalloproteinase 9 (MMP9), which induces down-regulation of claudin-1 by binding to the low density lipoprotein receptor-related protein1 (LRP-1). Perisciatic injection of HTS together with the opioid-receptor agonist DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-Enkephalin) results in a dose-dependent antinociceptive effect. Studies of the blood-brain-barrier suggest a barrier-opening effect of tPA by binding to LRP-1. In this study, we characterize intracellular signaling pathways, which are involved in opening the perineurial barrier after application of different agents (HTS, MMP9 and tPA). Methods: MMP9, HTS, tPA or Erk-Inhibitor PD98059 were injected perisciatically in Wistar rats. Sciatic nerves were harvested after indicated time points and used for Western Blotting or Immunofluorescence experiments. Results: Perisciatic injection of HTS transiently enhanced Erk phosphorylation in the sciatic nerve beginning 5 min after application. Erk protein expression remained unchanged. The increase of Erk phosphorylation was confined to the perineurium. Application of recombinant MMP9 perisciatically also resulted in phosphorylation of ERK within the first 30 min. Perisciatic injection of the Erk inhibitor PD98059 dose-dependently and almost completely blocked the ability of HTS to facilitate DAMGO-induced increases in mechanical nociceptive thresholds and blocked the reduction in claudin-1 content after HTS injection at the sciatic nerve. In contrast, neither perineurial treatment with HTS nor MMP9 changed the phosphorylation of the Akt kinase in the perineurium. Perisciatic injection of tPA (as a LRP-1 ligand) and DAMGO also resulted in an increase of mechanical nociceptive thresholds. Immunofluorescence and Western Blots revealed a down-regulation of claudin-1 after injection of different concentrations of tPA. However, injection of tPA did not result in an enhanced Erk phosphorylation. No change in claudin-1 concentration was observed after perisciatic injection of enzymatic inactive tPA. Discussion: Perisciatic injection of HTS results in an increased phosphorylation of Erk. This seems to be mediated by a release of MMP9 and binding of its hemopexin domain to LRP-1. Activation of the Erk signaling pathway leads to a down-regulation of claudin-1 and an increased permeability of the perineurial barrier. Similarly, injection of tPA (a known LRP-1 agonist) also results in a decreased claudin-1 concentration. Our findings reveal LRP-1 as a unique molecular target to allow for specific antinociception by controlled opening of the perineurial barrier. KW - peripherer Nerv KW - Schmerz KW - Perineurium KW - Erk KW - Claudin-1 KW - LRP1 KW - rtPA KW - perineurium KW - Erk KW - claudin-1 KW - LRP1 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132949 ER - TY - THES A1 - Heitmann, Johanna Friederike T1 - Signaltransduktionsweg nach rtPA-Behandlung im peripheren Nerven zur Barrierenöffnung für hydrophile Analgetika in der Regionalanästhesie T1 - Signaling pathway of rtPA for drug delivery of hydrophilic analgesics to the peripheral nerve for nociception-specific regional analgesia N2 - Zur Durchführung peripherer Nervenblockaden werden im klinischen Alltag nichtselektive Lokalanästhetika verwendet, die neben sensorischen auch motorische Nervenfasern blockieren. Diese Arbeit untersucht und beschreibt Grundlagen für die Verwendung selektiv wirksamer Co-Analgetika. Ziel dieser Arbeit war in diesem Kontext die Analyse der intrazellulären Signalwege, welche nach Applikation von rtPA am peripheren Nerven zur Öffnung der perineuralen Barriere und so zu einer opiat- vermittelten Analgesie führen. Gemäß unserer Hypothese bindet rtPA an den LRP-1- Rezeptor und löst eine intrazelluläre Signalkaskade aus: Erk wird phosphoryliert und inhibiert über bislang unklare Mechanismen die Claudin-1-Transkription. Claudin-1 wird weniger in die Zellmembran eingebaut und/oder verlässt durch Endozytose/ Internalisierung die Zellmembran, was zur Öffnung der perineuralen Barriere führt und den Durchtritt selektiv wirksamer Analgetika erlaubt. In der späteren Phase steht die Analyse der Wiederherstellung der Barrierefunktion der Zellmembran im Vordergrund. Die ist von zentraler Bedeutung um eine Schädigung des Nervens durch das Umgebungsmilieu zu verhindern. Vermutlich wird die Wiederherstellung der Barrierefunktion über den Wnt-Signalweg gesteuert. Die Akkumulation von b-Catenin und Cdx2 führt zu einem erneuten Anstieg der Claudin-1-Transkription. Der Claudin-1- Gehalt steigt in Western Blot-Untersuchungen jedoch bereits zu einem früheren Zeitpunkt in der Zellmembran wieder an. Dies legt nahe, dass weitere von der Transkription unabhängige Mechanismen zur Wiederherstellung der Barrierefunktion beitragen. Eine mögliche Alternative zu rtPA stellt katalytisch inaktives rtPAi dar, welches in Untersuchungen ähnliche Ergebnisse wie rtPA zeigte. Dabei könnte die Verwendung von rtPAi anstatt rtPA pathophysiologisch denkbare Komplikationen wie beispielsweise Blutungen verhindern. In Versuchen anderer Mitglieder der Arbeitsgruppe wurde die Öffnung der perineuralen Barriere mittels immunhistochemischer und funktioneller Untersuchungen bestätigt. Auch konnten keine akute Neurotoxizität oder Blutungsgefahr beobachtet werden. Somit stellt rtPA in Kombination mit Opioiden eine mögliche Alternative zur Verbesserung der postoperativen Analgesie dar, die jedoch weiterer Untersuchungen hinsichtlich von Nutzen, Risiken und Nebenwirkungen bedarf. N2 - Regional postoperative pain treatment with non-selective local anesthetics does not only block nociception but also the motoric function of the nerve. This thesis describes and examines principles for the utilization of selective co-analgesics. Aim of this study was to analyze the intracellular signaling-pathways after application of rtPA to the peripheral nerve. The application leads to an opening of the blood-nerve-barrier and to an opioid-mediated analgesia. We postulate that rtPA binds to the LRP-1-receptor and leads via phosphorylation of Erk to a downregulation of Claudin-1-transcription. The mechanism of downregulation is unknown. Claudin-1 is less incorporated into the cell membrane and/or it is removed by endocytosis. This leads to an opening of the blood- nerve-barrier and hydrophilic analgesics like opioids can reach the nerve. After the opening of the barrier we analyzed the mechanisms which lead to a restitution of the barrier-function. This step is important to assure that the nerve is protected from the environment. Our theory is that the Wnt-signaling-pathway is responsible for reestablishing the barrier. An accumulation of b-Catenin and Cdx2 leads to a resumption of Claudin-1-transcription. However Western Blot investigations showed an earlier rise of Claudin-1 in the cell-membrane. This indicates that there are other, from transcription independent mechanisms, that lead to restitution of the barrier-function. Catalytic inactive rtPAi is a promising alternative to rtPA as it shows similar effects without possible side effects like bleedings. Immunohistochemistry and behavioral tests performed by other members of the group confirmed the opening of the blood-nerve-barrier after application of rtPA. No acute neurotoxicity or bleedings have been observed. Therefore, we postulate that rtPA in combination with opioids is an interesting new alternative to mediate postoperative analgesia. However, we still need further investigations to learn more about the benefit, risks and side effects of rtPA application to the peripheral nerve. KW - Schmerz KW - Therapie KW - Analgesie KW - Signaltransduktion KW - Nerven KW - Blut-Nerven-Barriere KW - Co-Analgetika KW - rtPA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205177 ER -