TY - THES A1 - Siddiki, Afif T1 - Model calculations of current and density distributions in dissipative Hall bars T1 - Model rechnungen der Strom- und dichteverteilung in dissipative Hall bars N2 - In this work we examine within the self-consistent Thomas-Fermi-Poisson approach the low-temperature screening properties of a two-dimensional electron gas (2DEG) subjected to strong perpendicular magnetic fields. In chapter 3, numerical results for the unconfined 2DEG are compared with those for a simplified Hall-bar geometry realized by two different confinement models. It is shown that in the strongly nonlinear-screening limit of zero temperature the total variation of the screened potential is related by simple analytical expressions to the amplitude of an applied harmonic modulation potential and to the strength of the magnetic field. In chapter 4 we study the current and charge distribution in a two-dimensional electron system, under the conditions of the integer quantized Hall effect, on the basis of a quasilocal transport model, that includes nonlinear screening effects on the conductivity via the self-consistently calculated density profile. The existence of "incompressible strips" with integer Landau level filling factor is investigated within a Hartree-type approximation, and nonlocal effects on the conductivity along those strips are simulated by a suitable averaging procedure. This allows us to calculate the Hall and the longitudinal resistance as continuous functions of the magnetic field B, with plateaus of finite widths and the well-known, exactly quantized values. We emphasize the close relation between these plateaus and the existence of incompressible strips, and we show that for B values within these plateaus the potential variation across the Hall bar is very different from that for B values between adjacent plateaus, in agreement with recent experiments. We have improved on the previous chapter by a critical investigation of the impurity potential profiles and obtained reasonable estimates of the range and the amplitude of the potential fluctuations. We added a harmonic perturbation potential to the confining potential in order to generate the long-range-part of the overall impurity potential in the translation invariant model. This treatment of the long-range fluctuations allowed us to resolve apparent discrepancies such as the dependence of the QH plateau width on the mobility and to understand the crossing values of the high and low temperature Hall resistances. An interesting outcome of this model is that, it predicts different crossing values depending on the sample width and mobility. In chapter 6 we brie y report on theoretical and experimental investigations of a novel hysteresis effect that has been observed on the magneto-resistance (MR) of quantum-Hall (QH) bilayer systems in magnetic field (B) intervals, in which one layer is in a QH-plateau while the other is near an edge of a QH-plateau. We extend a recent approach to the QH effect, based on the Thomas-Fermi-Poisson theory and a local conductivity model to the bilayer system. This approach yields very different density and potential landscapes for the B-values at different edges of a QH plateau. Combining this with the knowledge about extremely long relaxation times to the thermodynamic equilibrium within the plateau regime, we simulate the hysteresis in the "active" current-carrying layer by freezing-in the electron density in the other, "passive", layer at the profile corresponding to the low-B edge of its QH plateau as B is swept up, and to the profile at the high-B edge as B is swept down. The calculated MR hysteresis is in good qualitative agreement with the experiment. If we use the equilibrium density profile, we obtain excellent agreement with an "equilibrium" measurement, in which the system was heated up to ~ 10K and cooled down again at each sweep step. N2 - Diese Arbeit wurde durch Experimente zur Potential- und Stromverteilung in Quanten-Hall- Systemen motiviert, die in den letzten Jahren in der Abteilung von Klitzing am MPI für Festkörperforschung durchgeführt wurden und ergaben, dass elektrostatische Abschirmungseffekte in zweidimensionalen Elektronensystemen (2DES), die den ganzzahligen Quanten-Hall-Effekt (QHE) zeigen, sehr wichtig für das Verständnis der Stromverteilung innerhalb der Probe und der extremen Genauigkeit der gemessenen quantisierten Werte des Hall-Widerstands sind. Daraus ergab sich für die hier vorgelegte Arbeit das folgende Programm. Zunächst wird, nach einem einleitenden Kapitel, in Kapitel 2 der Formalismus vorgestellt, mit dem in den späteren Kapiteln Elektronendichten und elektrostatische Potentiale, die z.B. das 2DES auf eine Probe mit Streifengeometrie eingrenzen, selbstkonsistent berechnet werden. Diese Selbstkonsistenz besteht aus zwei Teilen. Erstens wird, bei vorgegebenem Potential, die Elektronendichte berechnet. Zweitens wird aus vorgegebener Ladungsverteilung, bestehend aus (positiven) Hintergrundladungen und der (im ersten Schritt berechneten) Elektronenladungsdichte, und geeigneten Randbedingungen (konstantes Potential auf metallischen Gates) durch Lösen der Poisson-Gleichung das elektrostatische Potential berechnet. Wenn wir im ersten Schritt, unter Berücksichtigung der Fermi-Dirac-Statistik, die Elektronendichte quantenmechanisch aus den Energieeigenfunktionen und -werten berechnen, erhalten wir die Hartree-Näherung, die die Dichte als nichtlokales Funktional des Potentials liefert. Wenn man die Ausdehnung der Wellenfunktionen auf der Längenskala, auf der sich das Potential typischerweise ändert, vernachlässigen kann, so vereinfacht sich die Hartree-Näherung zur Thomas- Fermi-Näherung, die einen lokalen Zusammenhang zwischen Elektronendichte und Potential beschreibt. Die meisten der konkreten Rechnungen wurden im Rahmen dieser selbstkonsistenten Thomas-Fermi-Poisson-Näherung durchgeführt. Im Kapitel 3 wird allgemein das Abschirmverhalten eines 2DES im hohen Magnetfeld untersucht. Wir betrachten die Antwort auf eine harmonische Potentialmodulation im unbegrenzten 2DES und in streifenförmig begrenzten Systemen mit zwei unterschiedlichen Arten von Randbedingungen. Bei tiefen Temperaturen und hohen Magnetfeldern finden wir extrem nichtlineare Abschirmung. Im unbegrenzten 2DES charakterisieren wir die Abschirmung, indem wir die gesamte Variation des selbstkonsistent berechneten Potentials als Funktion der Amplitude des aufgeprägten cosinus-Potentials berechnen. Bei festem Magnetfeld ergeben sich so Stufenfunktionen, deren Gestalt stark vom Füllfaktor der Landau-Niveaus im homogenen Zustand ohne aufgeprägtes Potential abhängt (siehe Abbildungen 3.2- 3.6). Vielleicht noch unerwartetere Kurven ergeben sich, wenn man bei festem Modulationspotential die Varianz des selbstkonsistenten Potentials gegen das Magnetfeld B aufträgt (Abb. 3.9). Die Resultate lassen sich aber leicht verstehen und (bei Temperatur T = 0) in einem einfachen Schema (Abb. 3.7) zusammenfassen. Als ordnendes Prinzip stellt sich heraus, dass sich stets Zustände einstellen, in denen die Elektronendichte möglichst wenig von der bei verschwindendem Magnetfeld abweicht. Wenn die Zyklotronenergie groß gegen die thermische Energie kBT ist, erfordert das, dass in den großen Bereichen, in denen die Dichte variiert, ein Landau-Niveau unmittelbar an dem, im Gleichgewicht konstanten, elektrochemischen Potential liegen muss (En, “pinning”). Man nennt diese Bereiche kompressibel. In den kompressiblen Bereichen können Elektronen leicht umverteilt werden, d.h. die Dichte ist leicht veränderbar und in diesen Bereichen gibt es extrem effektive Abschirmung. Existieren kompressible Bereiche mit unterschiedlichen Landau-Niveaus (En) am elektrochemischen Potential, z.B. bei großer Modulation oder weil die Dichte zum Probenrand hin abnimmt, so gibt es zwischen benachbarten kompressiblen Bereichen mit unterschiedlichen Landau-Quantenzahlen n “inkompressible” Bereiche, in denen zwischen zwei Landau-Niveaus liegt. Dort sind alle Landau-Niveaus unterhalb von besetzt, die oberhalb leer. Folglich ist dort der Füllfaktor ganzzahlig und die Dichte konstant. Das Wechselspiel zwischen kompressiblen und inkompressiblen Bereichen bestimmt das Abschirmverhalten. Randeffekte erweisen sich nur in solchen Magnetfeldintervallen als wichtig für die Abschirmung im Inneren einer streifenförmigen Probe, in denen (schon ohne aufgeprägte Modulation) in der Probenmitte ein neuer inkompressibler Streifen entsteht. Im Kapitel 4 wird die Rolle der inkompressiblen Streifen in einer idealisierten, streifenförmigen Hall-Probe untersucht. Mithilfe einer lokalen Version des Ohmschen Gesetzes berechnen wir bei vorgegebenen Gesamtstrom die Stromdichte und das nun ortsabhängige elektrochemische Potential, dessen Gradient die Stromdichte treibt. Für den lokalen Leitfähigkeitstensor nehmen wir ein für homogenes 2DES berechnetes Resultat und ersetzen den Füllfaktor jeweils durch den lokalen Wert. Dadurch ergibt sich, dass bei Existenz inkompressibler Streifen der gesamte Strom auf diese Streifen eingeschränkt ist, in denen die Komponenten des spezifischen Widerstands die Werte des freien, idealen 2DES haben, also verschwindenden longitudinalen und quantisierten Hall-Widerstand. Aus Hartree-Rechnungen zeigen wir, dass es inkompressible Streifen nur in Magnetfeldintervallen endlicher Breite (um ganzzahlige Füllfaktoren) gibt und dass in der Nähe von Füllfaktor 4 es nur inkompressible Streifen mit dem lokalen Füll-faktor \nu(x) = 4 gibt, aber nicht solche mit \nu(x) = 2, in Gegensatz zu dem Ergebnis der Thomas-Fermi-Poisson-Näherung, die hier nicht gültig ist. Um diese Unzulänglichkeit der Thomas-Fermi-Poisson-Näherung und Artefakte des strikt lokalen Modells zu beheben, führen wir die Rechnungen mit einem (auf der Skala des mittleren Elektronenabstands) gemittelten Leitfähigkeitstensors aus. Damit erhalten wir, im Rahmen einer Linear-Response-Rechnung, sehr schöne Übereinstimmung mit den Potentialmessungen, die diese Dissertation motivierten, einen kausalen Zusammenhang zwischen der Existenz inkompressibler Streifen und der Existenz von Plateaus im QHE, und ein Verständnis der extremen Genauigkeit, mit der die quantisierten Widerstandswerte reproduziert werden können, unabhängig von Probenmaterial und -geometrie. Im Kapitel 5 untersuchen wir das Zufallspotential, in dem sich die Elektronen bewegen. Wir gehen davon aus, dass sich hinter einer undotierten Schicht eine Ebene mit zufällig verteilten ionisierten Donatoren befindet, deren Coulomb-Potentiale sich zu dem Zufallspotential überlagern. Wir weisen darauf hin, dass sich die langreichweitigen Fluktuationen dieses Potentials anders verhalten als die kurzreichweitigen. Die kurzreichweitigen klingen mit dem Abstand der Donatorebene von der Ebene des 2DES exponentiell ab, werden aber (bei B = 0) nur schwach durch das 2DES abgeschirmt. Diese Fluktuationen haben wir durch die endlichen Leitfähigkeiten und die Stoßverbreiterung der Landau-Niveaus berücksichtigt. Die langreichweitigen Fluktuationen, andererseits, sind nur schwach von der Entfernung der Donatorebene abhängig, werden aber stark vom 2DES abgeschirmt. Diese sollte man bei der selbstkonsistenten Abschirmungsrechnung explizit berücksichtigen. Erste Versuche in dieser Richtung zeigen, dass sie die Quanten-Hall-Plateaus verbreitern, verschieben und stabilisieren können. Sie sollten besonders bei breiten Proben wichtig werden, bei denen sie zusätzliche inkompressible Streifen im Probeninneren verursachen können. Schließlich diskutieren wir in Kapitel 6 Abschirmungseffekte in einem Doppelschichtsystem aus zwei parallelen 2DES. Interessante neue Effekte treten auf, wenn die Schichten verschiedene Dichten haben. Das Auftreten inkompressibler Streifen in der einen Schicht kann dann drastische Auswirkungen auf die andere Schicht haben. Widerstandsmessungen in Abhängigkeit vom Magnetfeld, die kürzlich an solchen Systemen durchgeführt wurden, zeigen, dass am Rande eines QH-Plateaus Hysterese auftritt, d.h. dass die für ansteigendes Magnetfeld gemessene Kurve nicht mit der für abfallendes Magnetfeld gemessenen Kurve übereinstimmt, wenn dieser Magnetfeldbereich in ein QH-Plateau der anderen Schicht fällt. Wir entwickeln ein Modell und beschreiben Modellrechnungen, die dieses Phänomen plausibel machen. KW - Elektronengas KW - Dimension 2 KW - Quanten-Hall-Effekt KW - Abschirmung KW - Stromverteilung KW - Dichteverteilung KW - Quanten Hall effekt KW - Nichtlineare abschirmung KW - Inkompressible Streifen KW - Doppelschichtsystem KW - Quantum Hall effect KW - Non-linear screening KW - Incompressible strips KW - Bilayer systems Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15100 ER - TY - THES A1 - Keller, Dirk T1 - Optische Eigenschaften ZnSe-basierter zweidimensionaler Elektronengase und ihre Wechselwirkung mit magnetischen Ionen T1 - ZnSe-based QWs with a two-dimensional electron gas: Optical properties and interaction with magnetic ions N2 - In dieser Arbeit wurden nichtmagnetische und semimagnetische ZnSe-basierte Quantentröge untersucht. Im Mittelpunkt des Interesses standen hierbei vor allem die Modifikation der optischen Spektren mit einer zunehmenden Modulationsdotierung der Strukturen und der Einfluss von Spinflip-Streuungen der freien Band-Elektronen an den Mn-Ionen auf die Magnetisierung und somit die Zeeman-Aufspaltung der Strukturen. Als experimentelle Methoden wurden Photolumineszenz (PL), Photolumineszenzanregung (PLE) und Reflexionsmessungen verwendet, die in Magnetfeldern von bis zu B=48 T und bei Temperaturen im Bereich von 1.6 K bis 70 K durchgeführt wurden. Darüber hinaus wurde die Abhängigkeit der Spin-Gitter-Relaxationszeit der Mn-Ionen von der Mn-Konzentration und der Elektronengasdichte in den Quantentrögen durch zeitaufgelöste Lumineszenzmessungen untersucht. Der Einfluss eines Gradienten in der s/p-d-Austauschwechselwirkung auf die Diffusion der Ladungsträger bildet einen weiteren Schwerpunkt dieser Arbeit. Als experimentelle Methode wurde hierbei ortsaufgelöste Lumineszenz verwendet. N2 - In the present work, nonmagnetic and semimagnetic ZnSe based quantum wells were studied. The thesis was focussed on the modification of optical spectra with an increasing modulation-doping of the structures. Further emphasis was placed on the influence of the spinflip scattering of the free carriers and the Mn ions on the magnetization and thus the giant Zeeman splitting of the structures. As experimental methods, photoluminescence spectroscopy (PL), photoluminescence excitation spectroscopy (PLE) and reflection measurements were used and were performed in magnetic fields up to B=48 T and at temperatures within the range of 1.6 K to 70 K. In addition, the dependence of the spin-lattice relaxation time of the Mn ions on the Mn concentration and the electron density was examined by time-resolved luminescence spectroscopy. The influence of a gradient in the s/p-d-exchange interaction on the diffusion of carriers was studied by spatially resolved luminescence spectroscopy. KW - Zinkselenid KW - Dimension 2 KW - Elektronengas KW - Optische Eigenschaft KW - Manganselenide KW - Quantenwell KW - Elektronenstreuung KW - Spin flip KW - Manganion KW - Quantentrog KW - Magneto-optische Eigenschaften KW - 2DEG KW - Exziton KW - Spinflip-Streuung KW - quantum wells KW - magneto-optical properties KW - 2DEG KW - excitons KW - spinflip scattering Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14774 ER - TY - THES A1 - Höpfner, Philipp Alexander T1 - Two-Dimensional Electron Systems at Surfaces — Spin-Orbit Interaction and Electronic Correlations T1 - Zweidimensionale Elektronensysteme auf Oberflächen — Spin-Bahn Wechselwirkung und elektronische Korrelationen N2 - This thesis addresses three different realizations of a truly two-dimensional electron system (2DES), established at the surface of elemental semiconductors, i.e., Pt/Si(111), Au/Ge(111), and Sn/Si(111). Characteristic features of atomic structures at surfaces have been studied using scanning tunneling microscopy and low energy electron diffraction with special emphasis on Pt deposition onto Si(111). Topographic inspection reveals that Pt atoms agglomerate as trimers, which represent the structural building block of phase-slip domains. Surprisingly, each trimer is rotated by 30° with respect to the substrate, which results in an unexpected symmetry breaking. In turn, this represents a unique example of a chiral structure at a semiconductor surface, and marks Pt/Si(111) as a promising candidate for catalytic processes at the atomic scale. Spin-orbit interactions (SOIs) play a significant role at surfaces involving heavy adatoms. As a result, a lift of the spin degeneracy in the electronic states, termed as Rashba effect, may be observed. A candidate system to exhibit such physics is Au/Ge(111). Its large hexagonal Fermi sheet is suggested to be spin-split by calculations within the density functional theory. Experimental clarification is obtained by exploiting the unique capabilities of three-dimensional spin detection in spin- and angle-resolved photoelectron spectroscopy. Besides verification of the spin splitting, the in-plane components of the spin are shown to possess helical character, while also a prominent rotation out of this plane is observed along straight sections of the Fermi surface. Surprisingly and for the first time in a 2DES, additional in-plane rotations of the spin are revealed close to high symmetry directions. This complex spin pattern must originate from crystalline anisotropies, and it is best described by augmenting the original Rashba model with higher order Dresselhaus-like SOI terms. The alternative use of group-IV adatoms at a significantly reduced coverage drastically changes the basic properties of a 2DES. Electron localization is strongly enhanced, and the ground state characteristics will be dominated by correlation effects then. Sn/Si(111) is scrutinized with this regard. It serves as an ideal realization of a triangular lattice, that inherently suffers from spin frustration. Consequently, long-range magnetic order is prohibited, and the ground state is assumed to be either a spiral antiferromagnetic (AFM) insulator or a spin liquid. Here, the single-particle spectral function is utilized as a fundamental quantity to address the complex interplay of geometric frustration and electronic correlations. In particular, this is achieved by combining the complementary strengths of ab initio local density approximation (LDA) calculations, state-of-the-art angle-resolved photoelectron spectroscopy, and the sophisticated many-body LDA+DCA. In this way, the evolution of a shadow band and a band backfolding incompatible with a spiral AFM order are unveiled. Moreover, beyond nearest-neighbor hopping processes are crucial here, and the spectral features must be attributed to a collinear AFM ground state, contrary to common expectation for a frustrated spin lattice. N2 - In der vorliegenden Arbeit werden drei unterschiedliche Beispiele für ein zweidimensionales Elektronensystem (2DES) auf der Oberfläche von Elementhalbleitern behandelt: Pt/Si(111), Au/Ge(111) und Sn/Si(111). Atomare Strukturen und deren spezielle Merkmale wurden mit Rastertunnelmikroskopie (STM) und Elektronenbeugung (LEED) untersucht, wobei ein Schwerpunkt die Abscheidung von Pt auf Si(111) war. Hervorzuheben ist hier die Anordnung von Pt Atomen als Trimere, die das Grundgerüst phasenverschobener Domänen bilden. Interessanterweise sind die Trimere um 30° gegenüber dem Substrat verdreht, was einen unerwarteten Symmetriebruch bedeutet. Daher stellt Pt/Si(111) ein einzigartiges Beispiel einer chiralen Struktur auf Halbleitern dar und könnte außerdem für katalytische Prozesse im atomaren Bereich interessant sein. Die Spin-Bahn Wechselwirkung ist auf Oberflächen, die schwere Elemente enthalten, von großer Bedeutung. Hier kann die Spin-Entartung in den elektronischen Zuständen aufgehoben sein, was als Rashba-Effekt bekannt ist. Rechnungen mittels Dichtefunktionaltheorie (DFT) zeigen, dass eine solche Aufspaltung in der hexagonalen Fermi-Fläche von Au/Ge(111) existiert. Experimentell wurde dies mit dreidimensionaler spin- und winkelaufgelöster Photoelektronenspektroskopie bestätigt. Dabei folgt die planare Spin-Komponente einem kreisförmigen Umlaufsinn, während zudem eine starke Aufrichtung des Spins aus der Ebene hinaus entlang gerader Abschnitte der Fermi-Fläche auftritt. Hierbei wurden zum ersten Mal in einem 2DES zusätzliche Rotationen des planaren Spinanteils in der Oberflächenebene nahe von Hochsymmetrierichtungen nachgewiesen. Dieses komplexe Spin-Muster resultiert aus den kristallinen Anisotropien und kann exzellent modelliert werden, indem das Rashba-Modell um Dresselhaus-artige Spin-Bahn Terme höherer Ordnung erweitert wird. Die alternative Verwendung von Gruppe-IV Adatomen bei einer geringeren Bedeckung ändert die Eigenschaften eines 2DES deutlich. Kennzeichnend sind eine verstärkte Ladungsträger-Lokalisierung und ein von Korrelationen bestimmter Grundzustand. Dabei stellt Sn/Si(111) ein Modell-System dar, das zudem ein spin-frustriertes Dreiecksgitter bildet. In einem solchen fehlt üblicherweise die langreichweitige magnetische Ordnung und der Grundzustand ist entweder ein isolierender spiralförmiger Antiferromagnet (AF) oder eine Spin-Flüssigkeit. Zur Analyse des Wechselspiels von geometrischer Frustration und elektronischen Korrelationen dient die Ein-Teilchen Spektralfunktion als Basisgröße. Dazu wurden die sich ergänzenden Stärken von Bandstruktur-Rechnungen in der lokalen Dichtenäherung (LDA), winkelaufgelöster Photoelektronenspektroskopie und Viel-Teilchen Modellen (hier LDA+DCA) kombiniert. Dabei wurde die Existenz eines Schattenbandes und einer Bandrückfaltung nachgewiesen, wobei letztere einen spiralförmigen AF als Grundzustand ausschließt. Vielmehr sind Hüpfprozesse über den nächsten Nachbarn im Gitter hinaus relevant und die spektralen Merkmale sind, trotz der Spin-Frustration, durch einen langreichweitigen kollinearen AF als Grundzustand erklärbar. KW - Halbleiteroberfläche KW - Elektronengas KW - Dimension 2 KW - scanning tunneling microscopy KW - photoelectron spectroscopy KW - triangular lattice KW - Rashba effect KW - spin-orbit coupling KW - metal-to-insulator transition KW - Rastertunnelmikroskop KW - Photoelektronenspektroskopie KW - Dreiecksgitter KW - Rashba-Effekt KW - Spin-Bahn-Wechselwirkung KW - Metall-Isolator-Phasenumwandlung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78876 ER - TY - THES A1 - Keß, Martin T1 - Wellenfunktionsbasierte Beschreibung der zweidimensionalen vibronischen Spektroskopie von molekularen Aggregaten und Ladungstransfersystemen T1 - Wave-function based description of the two-dimensional vibronic spectroscopy of molecular aggregates and charge-transfer systems N2 - Diese Arbeit befasst sich mit zeitaufgelösten Prozessen in molekularen Systemen. Dabei wurde sowohl die Wellenpaketdynamik nach Photoanregung betrachtet als auch spektrale Eigenschaften mittels Absorptions- und zweidimensionaler Spektroskopie untersucht. Zunächst widmet sich die Arbeit der Wellenpaket- und Populationsdynamik in zwei diabatischen, gekoppelten Zuständen. Nach impulsiver Anregung aus dem zu Beginn besetzten Zustand treten in der Populationsdynamik zwei deutlich verschiedene Oszillationen auf. Der langsamer variierende Populationstransfer besitzt die Periodendauer der Vibrationsbewegung und ist auf einen Wechsel der Zustände beim Durchlaufen des Wellenpakets durch die Kreuzungsregion der diabatischen Potentiale zurückzuführen. Die ultraschnelle Komponente mit einer Periodendauer von etwa 4 fs lässt sich als eine Art Rabi-Oszillation beschreiben, die durch die (zeitunabhängige) Kopplung hervorgerufen wird. Sie wurde mit Hilfe von analytischen Berechnungen ausführlich charakterisiert. Damit dieser Prozess auftreten kann müssen mehrere Bedingungen erfüllt werden: Das Wellenpaket muss über die Dauer der Oszillationen annähernd örtlich lokalisiert bleiben; dies ist an den Umkehrpunkten der Wellenpaketsbewegung der Fall. Die Amplitude der Oszillationen in den Populationen ist proportional zum Verhältnis der Kopplung zum Energieabstand der Zustände. Deshalb muss an den stationären Stellen die Kopplung groß im Vergleich zum Energieabstand sein. Die Amplitude der Oszillationen hängt außerdem von dem Populationsverhältnis und den Phasen der Komponenten des Wellenpakets in den beiden Zuständen ab. Die ultraschnellen Oszillationen bleiben auch in mehrdimensionalen Systemen mit unterschiedlichen Vibrationsfrequenzen je Freiheitsgrad erhalten. Das gleiche Modell wurde benutzt, um Ladungstransferprozesse mittels linearer und 2D-Spektroskopie zu untersuchen. Eine Kopplung an die Umgebung wurde, aufbauend auf einer Quanten-Master-Gleichung in Markov-Näherung, wellenfunktionsbasiert mittels eines Quantum-Jump-Algorithmus mit expliziter Dephasierung beschrieben. Dabei findet mit vorher definierten Wahrscheinlichkeiten zu jedem Zeitschritt einer von drei stochastischen Prozessen statt. Neben kohärenter Propagation können Sprünge in einen anderen Eigenzustand des Systems und Dephasierungen auftreten. Zwei Dissipationsparameter spielen dabei eine Rolle. Dies ist zum einen die Stärke der System-Bad-Kopplung, welche die Gesamtrate der Energierelaxation beschreibt. Weiterhin beeinflusst die Dephasierungskonstante den Verlust kohärenter Phasen ohne Energieänderung. Fallenzustände wurden identifiziert, die durch sehr geringe Sprungraten in niedrigere Zustände charakterisiert sind. Die Langlebigkeit kann durch die Form der Eigenfunktionen erklärt werden, die eine deutlich andere Wahrscheinlichkeitsverteilung als die der Nicht-Fallenzustände besitzen. Dadurch werden die in die Sprungraten eingehenden Matrixelemente klein. Das Absorptionsspektrum zeigt Peaks an der Stelle der Fallenzustände, da nur die Eigenfunktionen der Fallenzustände große Franck-Condon-Faktoren mit der Anfangswellenfunktion besitzen. Verschiedene Kombinationen der Dissipationsparameter führen zu Änderungen der relativen Peakintensitäten und der Peakbreiten. Die 2D-Spektren des Ladungstransfersystems werden störungstheoretisch über die Polarisation dritter Ordnung berechnet. Sie zeigen viele eng nebeneinander liegende Peaks in einer schachbrettmusterförmigen Anordnung, die sich auf Übergänge unter Mitwirkung der Fallenzustände zurückführen lassen. Höhere System-Bad-Kopplungen führen aufgrund der effizienten Energiedissipation zu einer Verschiebung zu kleineren Energien. Peaks, die mit schneller zerfallenden Fallenzuständen korrespondieren, bleichen schneller aus. Höhere Dephasierungskonstanten resultieren in verbreiterten Peaks. Um den Einfluss der Dissipation genauer zu charakterisieren, wurden gefilterte 2D-Spektren betrachtet. Dazu wurden Ausschnitte der Polarisation dritter Ordnung zu verschiedenen Zeiten fouriertransformiert. Längere Zeiten führen zu einer effektiveren Energierelaxation entlang der entsprechenden Zeitvariablen. Die Entvölkerung der höher liegenden Zustände lässt sich somit zeit- und energieaufgelöst betrachten. Weiterhin wurde gezeigt, dass sich der Zerfall eines einzelnen Peaks mit dem Populationsabfall des damit korrespondierenden Eigenzustandes in Einklang bringen lässt, obwohl die Zuordnung der Peaks im 2D-Spektrum zu Übergängen zwischen definierten Eigenzuständen nicht eindeutig ist. Mit dem benutzten eindimensionalen Modell können auch Ladungstransferprozesse in organischen gemischtvalenten Verbindungen beschrieben werden. Es wurde die Frage untersucht, welche Prozesse nach einem optisch induzierten Energietransfer in solchen Systemen ablaufen. Experimentelle Daten (aufgenommen im Arbeitskreis von Prof. Lambert) deuten auf eine schnelle interne Konversion (IC) gefolgt von Thermalisierung hin. Um dies theoretisch zu überprüfen, wurden Absorptionsspektren bei verschiedenen Temperaturen berechnet und mit den gemessenen transienten Spektren verglichen. Es findet sich, abhängig von der Stärke der elektronischen Kopplung, eine sehr gute bis gute Übereinstimmung, was die Annahme eines schnellen ICs stützt. Im letzten Teil der Arbeit wurden vibronische 2D-Spektren von molekularen Aggregaten betrachtet. Dazu wurde die zeitabhängige Schrödingergleichung für ein Monomer-, Dimer- und Trimersystem mit der Multi-Configuration Time-Dependent Hartree-Methode gelöst und die Polarisation nicht-störungstheoretisch berechnet. Der Hamiltonoperator des Trimers umfasst hierbei sieben gekoppelte elektronische Zustände und drei bzw. sechs Vibrationsfreiheitsgrade. Der betrachtete Photonenecho-Beitrag der Polarisation wurde mittels phasencodierter Laserpulse extrahiert. Die resultierenden Spektren sind geometrieabhängig, ein Winkel zwischen den Übergangsdipolmomenten der Monomere von 0° (180°) resultiert in einem H-Aggregat (J-Aggregat). Die Lage und Intensität der Peaks im rein elektronischen Trimer wurde analytisch erläutert. Die Spektren unter Einbeziehung der Vibration zeigen eine ausgeprägte vibronische Struktur. Es wurde gezeigt, wie die Spektren für höhere Aggregationsgrade durch die höhere Dichte an vibronischen Zuständen komplexer werden. Im J-Aggregat ist mit zunehmender Aggregation eine stärkere Rotverschiebung zu sehen. Das Spektrum des H-Aggregats zeigt eine im Vergleich zum J-Aggregat kompliziertere Struktur. Die Verwendung zweier Vibrationsfreiheitsgrade je Monomer führt zu Spektren mit überlappenden Peaks und einer zusätzlichen vibronischen Progression. Der Vergleich von Spektren verschiedener Mischungen von Monomer, Dimer und Trimer, entsprechend einem von Temperatur und Konzentration abhängigen Aggregationsgrad, zeigt den Einfluss dieser experimentellen Faktoren. Schließlich wurden mögliche Ansätze aufgezeigt, anhand der Spektren auf den Aggregationsgrad zu schließen. N2 - This work studies time-resolved phenomena in molecular systems. Both, the wave-packet dynamics after photoexcitation and the spectral properties, examined via absorption and two-dimensional spectroscopy, are regarded. First, the wave-packet and population dynamics in two coupled diabatic states are considered. After an impulsive excitation from the initially populated state, two significantly different oscillatory features are visible in the population dynamics. The slower varying population transfer follows the oscillation period of the vibrational motion and results from the diabatic transition when the wave-packet passes through the crossing region of the respective potentials. The ultrafast oscillatory component with an oscillation period of about 4 fs can be described as a Rabi-like oscillation induced by the (time-independent) coupling. It is characterized in detail via analytic calculations. For this contribution to be visible, some conditions have to be met: The wave-packet needs to be spatially localized during the duration of the oscillations. This is the case at the classical turning points of the wave-packet motion. The oscillations' amplitude seen in the populations is proportional to the ratio between the coupling and the energetic gap between the involved states. This means that the coupling needs to be large compared to the energy separation at the points where the wave-packet is stationary. Additionally, the amplitude depends on the relative populations and the phases of the wave-packet components in the two states. The ultrafast oscillations persist in systems of higher dimensionality with different vibrational frequencies in each degree of freedom. The same model is used to examine charge-transfer processes via linear and 2D spectroscopy. A coupling to the environment is described by a quantum-jump algorithm with explicit treatment of dephasing, based on a quantum-master equation in Markov approximation. At each time step, one of three stochastic processes takes place with a pre-defined probability. Besides coherent propagation, jumps into other eigenstates of the system and dephasing occur. Two dissipation parameters are of relevance. The first is the value of the system-bath coupling which influences the overall energy relaxation rate while, additionally, the dephasing constant causes a loss of phase coherence without energy relaxation. Trap states are identified, which are characterized by very low jump rates to lower states. Their slow decay can be explained by the shape of their respective eigenfunctions, which possess a vastly different probability density than eigenstates of the non-trap states. This results in small matrix elements entering in the equations for the jump rates. The absorption spectrum exhibits peaks at the energies of the trap states because only the trap states' eigenfunctions lead to large Franck-Condon factors with the initial wave function. Different values of the dissipation parameters lead to changes in the relative peak intensities and peak widths. The 2D spectra of the charge-transfer system are calculated via the third-order polarization. They show many close lying peaks in a chessboard like distribution. The peaks can be traced back to transitions involving the trap states. Higher values of the system-bath coupling lead to a shift to lower energies because of the more efficient energy dissipation. Peaks corresponding to faster decaying trap states show more substantial loss in intensity as compared to other peaks. Higher values of the dephasing constant result in broader peaks. To better characterize the influence of the dissipation, we consider filtered 2D spectra. Therefore, cuts of the third-order polarization at different times are Fourier-transformed separately. Cuts at later times map the more effective energy relaxation along the respective time-variable. Via this technique the de-population of higher lying states can be monitored both in time and energy. Additionally it is shown that the decay of a specific peak can be related to the population decay of the corresponding eigenstate, even though the assignment of peaks in the 2D spectrum to transitions between eigenstates is not unique. The one-dimensional model can also be used to examine charge-transfer processes in organic mixed-valence compounds. Here, the question is, which processes take place after an optically induced energy transfer. Transient absorption spectra, recorded in the group of Prof. Lambert, hint to a fast internal conversion (IC) followed by thermalisation. To check this theoretically, absorption spectra at different temperatures are calculated and compared to the measured transient spectra. Depending on the value of the electronic coupling element, a very good to good agreement is found, supporting the existence of a fast IC process. The last part of this work considers vibronic 2D spectra of molecular aggregates. Therefore, the time-dependent Schrödinger equation is solved with the Multi-Dimentional Time-Dependent Hartree-method for a monomer, dimer and trimer system, and the polarization is calculated via a non-perturbative scheme. The trimer Hamiltonian consists of seven coupled electronic states and three or six vibrational degrees of freedom, respectively. The photon-echo contribution of the polarization is extracted via phase-coded laser pulses. This results in geometry dependent spectra: An angle between the monomer transition dipole moments of 0° (180°) leads to an H-aggregate (J-aggregate). In the purely electronic system, the location and intensities of the peaks are explained analytically. The spectra including vibrations show a rich vibronic structure. It is shown that spectra for higher degrees of aggregation are more complex because of the higher density of vibronic states. The J-aggregate is stronger red shifted in larger aggregates. The spectrum of the H-aggregate possesses a more complicated structure as compared to the J-aggregate spectrum. The inclusion of a second vibrational degree of freedom into each monomer results in spectra with overlapping peaks and an additional vibrational progression. Spectra of different mixtures of monomer, dimer and trimer are compared. Because the level of aggregation depends on temperature and concentration, this documents the influence of the experimental conditions on the 2D spectra. Finally, possible approaches to infer the degree of aggregation from the spectra are discussed. KW - Quantenmechanik KW - Ladungstransfer KW - Quantendynamik KW - Zweidimensionale elektronische Spektroskopie KW - Aggregat KW - Spektroskopie KW - Dimension 2 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136458 ER -