TY - JOUR A1 - Groh, Claudia A1 - Rössler, Wolfgang T1 - Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee JF - Insects N2 - Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect. KW - mushroom body KW - microglomeruli KW - projection neurons KW - Kenyon cells KW - dendritic specializations KW - structural synaptic plasticity KW - behavioral plasticity KW - vision KW - olfaction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200774 SN - 2075-4450 VL - 11 IS - 1 ER - TY - JOUR A1 - Stieb, Sara Mae A1 - Kelber, Christina A1 - Wehner, Rüdiger A1 - Rössler, Wolfgang T1 - Antennal-Lobe Organization in Desert Ants of the Genus Cataglyphis JF - Brain, Behavior and Evolution N2 - Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities. Although Cataglyphis species lack a trail pheromone system, Cataglyphis fortis employs olfactory cues for detecting nest and food sites. To investigate potential adaptations in primary olfactory centers of the brain of C. fortis, we analyzed olfactory glomeruli (odor processing units) in their antennal lobes and compared them to glomeruli in different Cataglyphis species. Using confocal imaging and 3D reconstruction, we analyzed the number, size and spatial arrangement of olfactory glomeruli in C. fortis, C.albicans, C.bicolor, C.rubra, and C.noda. Workers of all Cataglyphis species have smaller numbers of glomeruli (198–249) compared to those previously found in olfactory-guided ants. Analyses in 2 species of Formica – a genus closely related to Cataglyphis – revealed substantially higher numbers of olfactory glomeruli (c. 370), which is likely to reflect the importance of olfaction in these wood ant species. Comparisons between Cataglyphis species revealed 2 special features in C. fortis. First, with c. 198 C. fortis has the lowest number of glomeruli compared to all other species. Second, a conspicuously enlarged glomerulus is located close to the antennal nerve entrance. Males of C. fortis possess a significantly smaller number of glomeruli (c. 150) compared to female workers and queens. A prominent male-specific macroglomerulus likely to be involved in sex pheromone communication occupies a position different from that of the enlarged glomerulus in females. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats (salt pans) that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system. KW - olfactory glomeruli KW - plasticity KW - ant KW - antennal lobe KW - glomerulus KW - insects KW - interspecific comparison KW - macroglomerulus KW - olfaction Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196815 SN - 0006-8977 SN - 1421-9743 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 77 IS - 3 ER - TY - THES A1 - Langenhan, Tobias T1 - Ciliary neurotrophic factor (CNTF) im olfaktorischen System von Ratten und Mäusen T1 - Ciliary neurotrophic factor (CNTF) in the olfactory system of rats and mice N2 - Das olfaktorische System ist aufgrund seiner lebenslangen regenerativen Kapazität, seines Reichtums an neurotrophen Faktoren und der relativ guten Zugänglichkeit für Manipulationen ein attraktiver Gegenstand neurobiologischer Forschung. In der vorliegenden Arbeit wurde die Lokalisation und mögliche Funktion des ziliären neurotrophen Faktors (CNTF) in der primären Geruchsbahn mit Hilfe immunhistochemischer Methoden untersucht. Es konnte gezeigt werden, dass die CNTF-Ir bei Ratten und Mäusen in den olfaktorischen Gliazellen (Ensheathingzellen) lokalisiert ist. Elektronenmikroskopische Aufnahmen belegten ein zytoplasmatisches und nukleäres Vorkommen der CNTF-Ir innerhalb der EC. Ein neues und überraschendes Ergebnis der Arbeit ist, dass CNTF in individuellen olfaktorischen Neuronen vorkommt. Bislang wurde CNTF lediglich in Gliazellen des zentralen und peripheren Nervensystems nachgewiesen. Die weitere Charakterisierung der epithelialen CNTF-ir Neurone kennzeichnete diese als reife olfaktorische Nervenzellen. Die CNTF-Ir war mit dem olfaktorischen Markerprotein (OMP) kolokalisiert, einem Marker ausschließlich reifer ON und wies keine Kolokalisation mit dem Growth associated protein 43 (GAP-43) auf, dessen Expression unreife Riechsinneszellen kennzeichnet. CNTF könnte einerseits an lebenslang fortwährenden De- und/oder Regenerationsvorgängen des olfaktorischen Epithels beteiligt sein. Die Exposition der Riechschleimhaut gegenüber infektiösen, physikalischen und chemischen Noxen bedingt den ständigen Verlust olfaktorischer Neurone und deren lebenslange Regeneration aus neuronalen Vorläuferzellen im olfaktorischen Epithel. Die Zellkerne CNTF-ir ON wiesen in der Mehrzahl keine degenerativen Veränderungen wie Kondensierung und Fragmentierung auf, wie es bei geschädigten und untergehenden Zellen beobachtet wird. Im olfaktorischen Epithel zeigte sich des weiteren keine neuronale Kolokalisation von CNTF mit der aktivierten Caspase-3, einem Exekutorenzym der Apoptose, wie man es bei apoptotisch degenerierenden Neuronen findet. Nach Läsionen des olfaktorischen Epithels von Mäusen, die nekrotische Zelluntergänge auslösen, konnte kein gesteigertes Vorkommen von CNTF-ir ON gezeigt werden. Eine Einbindung von CNTF in die Mechanismen neuronaler Degeneration erscheint nach den Ergebnissen verschiedener Experimente wenig wahrscheinlich. Eine zweite Erklärung für das individuelle neuronale Auftreten der CNTF-Ir bot die Annahme, dass CNTF mit der Expression olfaktorischer Rezeptorproteine vergesellschaftet sein könnte. Dreidimensionale Rekonstruktionen von Paaren von BO bei Ratten und Mäusen zeigte, dass die Axone CNTF-ir ON in Glomeruli olfactorii projizierten, die bilateralsymmetrisch in beiden BO eines Tieres lokalisiert waren. Diese Symmetrie findet man ebenfalls bei den Projektionen der ON, die das gleiche olfaktorische Rezeptorprotein exprimieren. Die Lokalisation der CNTF-ir innervierten Glomeruli war interindividuell ähnlich, ihre Anzahl wies jedoch erhebliche Unterschiede auf. Dieses Phänomen lässt sich mit Befunden vergleichen, die im Rahmen von olfaktorischen Aktivitätsstudien bei Mäusen und Ratten erhoben wurden. Dabei beobachtete man eine Erhöhung der Anzahl aktivierter Glomeruli mit steigenden Geruchsstoffkonzentrationen. Auffallend war eine deutliche Übereinstimmung des Verteilungsmusters der CNTF-ir Glomeruli mit dem in der Literatur dargestellten Verteilungsmuster von Glomeruli, die durch Uringerüche aktiviert werden. Die räumliche Rekonstruktion der BO und die Darstellung der Position der CNTF-ir innervierten Glomeruli legt demnach eine neue mögliche Funktion von CNTF im olfaktorischen System nah: dessen Einbindung in Phänomene der Aktivität olfaktorischer Nervenzellen und plastischer Prozesse, die an der ersten Synapse der Geruchsbahn stattfinden. In der vorliegenden Arbeit konnte durch die Anwendung von klassischen Methoden der anatomisch-histologischen Forschung die Lokalisation von CNTF in der primären Geruchsbahn geklärt werden. Die Befunde führten zu weiteren Hypothesen hinsichtlich seiner funktionellen Einbindung in die olfaktorische Informationsverarbeitung, denen in zukünftigen Studien nachgegangen werden wird. N2 - The olfactory system is bestowed with a set of remarkable features that render it an intriguing object for neurobiological research. It possesses the livelong capacity to regenerate, it displays an extraordinary wealth of neurotrophic factors and it is easily accessible to experimental manipulations. The current study aimed to deliver a comprehensive description of the localization and possible function of ciliary neurotrophic factor (CNTF) in the primary olfactory pathway by means of immunohistochemical methods. It could be shown that CNTF-immunoreactivity in rats and mice was localized in olfactory glia cells (ensheathing cells); using electron microscopy it was demonstrated that CNTF-immunoreactivity occurred both in the cytoplasm and the nucleus of ensheathing cells. Additionally, it was shown that CNTF can be also found in individual olfactory sensory neurons (OSN). Thus far, CNTF was known to be localized in peripheral and central glial cells only. Further characterization of neuroepithelial CNTF-occurrence revealed that CNTF-immunoreactive OSN are mature neurons displaying colocalization with the olfactory marker protein (OMP), a distinct marker protein for mature OSN. This was in line with absent colocalization of CNTF with Growth associated protein 43 (GAP-43) immunoreactivity, a marker of maturing OSN. CNTF could be implicated in the ongoing processes and neurode- and regeneration that take place in the olfactory epithelium. The olfactory mucosa is constantly exposed to the outer environment including noxious substances such as infectious agents, and extreme physical or chemical conditions. Hence, a permanent loss of OSN occurs which is counterbalanced with constant regeneration of neurons from neural precursor cells residing in the epithelium. Nuclei of CNTF-immunoreactive OSN did not display degenerative signs such as condensation or fragmentation that mark harmed degenerating cells. In addition to that no colocalization of CNTF and the apoptotic executor enzyme activated capsase-3 could be found in the olfactory epithelium. Even after chemical lesions of the olfactory epithelium of mice that cause necrotic cell death no enhanced incidence of CNTF-immunoreactive OSN was noted. Therefore, an implication of CNTF in neuronal degenerative processes in the olfactory mucosa seems unlikely. An alternative explanation for the individual neuronal localization of CNTF-immunoreactivity relied on the assumption that CNTF could be associated with the expression of olfactory receptor proteins (ORP). Three-dimensional reconstructions of rat and mice olfactory bulb pairs demonstrated the axonal projections of CNTF-immunoreactive OSN in olfactory glomeruli, which where found to be located at bilaterally symmetrical positions. This symmetry is also notable for OSN that express the identical ORP. The localization of CNTF-immunoreactive glomeruli was interindividually similar although they substantially differed in their numbers between animals. This phenomenon is reminiscent of results from olfactory activity studies obtained from rats and mice. It was observed that an increasing number of olfactory glomeruli is recruited due to an elevation of the odour concentration that the animals was exposed to. The distribution pattern of CNTF-immunoreactive glomeruli was comparable to glomerular activity maps elicited by urine odours. Hence, the three-dimensional reconstruction of olfactory bulbs and the localization of CNTF-immunoreactive glomeruli indicate a possible role for CNTF in activity-dependent processes of OSN and in neuroplastic mechanisms that occur at the first synapse of the primary olfactory pathway. In the current dissertation the localization of CNTF in the primary olfactory pathway was untangled by means of classical anatomical-histological techniques. The results yielded further hypotheses regarding the functional relationship of CNTF with olfactory information processing, which will be followed by future investigations. KW - CNTF KW - neurotrophe Faktoren KW - Neuroregeneration KW - Olfaktion KW - Geruchssystem KW - CNTF KW - neurotrophic facors KW - neuroregeneration KW - olfaction KW - olfactory system Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16009 ER - TY - JOUR A1 - Falibene, Augustine A1 - Roces, Flavio A1 - Rössler, Wolfgang A1 - Groh, Claudia T1 - Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain JF - Frontiers in Behavioral Neuroscience N2 - Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies. KW - microglomeruli KW - temperature KW - broodtranslocation KW - camponotus ants KW - olfaction KW - vision KW - synapticplasticity KW - mushroom body Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146711 VL - 10 IS - 73 ER - TY - THES A1 - Frey, Monika T1 - Effects and mechanisms of a putative human pheromone T1 - Effekte und Mechanismen eines putativen menschlichen Pheromons N2 - There is evidence that pheromones are communicative signals in animals. However, the existence and function of human pheromones are still under discussion. During the last years several substances have been labeled as putative human pheromones and especially 4,16–androstadien-3-one (androstadienone), found in male and female sweat, became subject of intense investigation. In contrast to common odors androstadienone presumably modulates human physiological and psychological reactions. Data suggest that androstadienone might influence the processing of visual cues, specifically faces or affective stimuli, via projections from the fusiform gyrus and the amygdala. Moreover, attentional processes may be modulated, which is supported by explicit and implicit behavioral data. This thesis includes three experimental studies examining effects of androstadienone exposure on behavioral and cortical reactions to visual and emotional stimuli. The main hypotheses were that androstadienone might influence human behavior to and perception of visual cues. The first study sought to clarify androstadienone effects on attention-related reactions as well as on behavioral tendencies. Motoric approach-avoidance reactions in response to happy and angry facial expressions were investigated in 30 women and 32 men. Participants either inhaled androstadienone or a control solution, without knowing the real content, while performing the following task: they had to push away or to pull towards them a joystick as fast as possible in reaction to either an angry or a happy cartoon face, which was presented on a computer screen. Results showed that androstadienone modulated the participant´s task performance by accelerating the reaction speed compared to the control compound. Faster reactions were observed particularly when reacting to angry faces but not when reacting to happy faces. This might be explained by the finding that human body odors, the source of androstadienone, were found to activate the human fear system, i.e. modulating fear-related attentional processes. Therefore, the quicker reaction towards angry faces with exposure to androstadienone could be due to an enhanced allocation of attentional resources towards fear-related cues like angry faces. Results also showed that androstadienone enhanced men´s approach tendency towards faces independent of emotional expressions. This observation might be explained by androstadienone´s former shown ability to improve attractiveness ratings of other persons. In this regard, the endogenous odor might enhance evaluations of faces in men and, thus, might improve their willingness to approach social stimuli. In contrast to men, women already showed in the control condition higher approach tendency towards faces. Therefore, androstadienone might rather maintain than enhance the approach score in women. In the second study event-related brain potentials (ERPs) triggered by social and non-social visual stimuli were investigated by means of electroencephalography. In a double-blind between-subjects design 51 women participated. Twenty-eight women inhaled androstadienone, whereas 23 women inhaled a control solution. Four different picture categories, i.e. real faces, pictures with couples, pictures with social and non-social scenes, each including three different valence categories, i.e. positive, negative and neutral, should clarify the stimulus type or context androstadienone is acting on. The androstadienone compared to the control odor did not influence brain responses significantly. Explorative analyses, however, suggested that androstadienone influences the processing of faces. While in the control group angry faces elicited larger P300 amplitudes than happy faces, the androstadienone group showed similar P300 amplitudes concerning all emotional expressions. This observation tentatively indicates that the endogenous odor might indeed affect the neuronal responses to emotional facial stimuli, especially late components reflecting evaluative processes. However, this observation has to be verified and further investigated, in particular whether androstadienone caused reduced responses to angry faces or enhanced responses to happy faces. The third study investigated androstadienone effects on face processing especially in men. ERPs elicited by happy, angry and neutral cartoon faces, which were presented on a computer screen, were measured while 16 men, not knowing the applicated odor, inhaled either androstadienone or a control solution. Exposure to androstadienone significantly increased later neuronal responses, the P300 amplitude. This belated component of the ERP reflects attention allocation and evaluative processes towards important stimuli. Therefore, androstadienone might facilitate central nervous face processing by enhancing attention towards these stimuli. In sum, the current results corroborate the notion of androstadienone as an active social chemosignal. In minute amounts and not detectable as an odor it influenced cortical and motoric reactions. Therefore, it might be concluded that androstadienone indeed affects cognitive functions like attentional processes and in turn affects our behavior. The current results further support the notion that androstadienone acts like a human modulator pheromone, namely modulating ongoing behavior or a psychological reaction to a particular context, changing stimulus sensitivity, salience and sensory-motor integration. However, these conclusions remain tentative until further replication takes place, best in ecologically valid environments. Furthermore, one has to keep in mind that the current studies could not replicate several previous findings and could not verify some hypotheses assuming communicative effects of androstadienone. Thus, the main assumption of this thesis that androstadienone is an active chemosignal is still challenged. Also, whether the term “pheromone” is indeed suitable to label androstadienone remains open. N2 - Pheromone sind als Kommunikationssubstanzen im Tierreich unabkömmlich. Ob jedoch menschliche Pheromone tatsächlich existieren, wird noch immer diskutiert. Während der letzten Jahre wurden mehrere Substanzen als putative menschliche Pheromone bezeichnet. Unter diesen wurde v.a. 4,16–androstadien-3-on (Androstadienon), eine Komponente des männlichen und weiblichen Schweißes, intensiv untersucht. Bisherige Ergebnisse deuten darauf hin, dass Androstadienon im Gegensatz zu herkömmlichen Duftstoffen die Verarbeitung visueller Stimuli, v.a. von Gesichtern und von affektiven Stimuli, vermutlich über eine Modulation der Aktivität des Gyrus fusiformis und der Amygdala beeinflussen kann. Außerdem könnten Aufmerksamkeitsprozesse durch Androstadienon beeinflusst sein, was durch explizite und implizite Verhaltensdaten angedeutet wird. Diese Doktorarbeit untersuchte in drei verschiedenen Studien die Effekte von Androstadienon auf kortikale Reaktionen und Verhalten bei Männern und Frauen, während diese mit visuellen, insbesondere emotionalen Stimuli konfrontiert wurden. Die Haupthypothesen waren, dass Androstadienon die Wahrnehmung visueller Stimuli und menschliches Verhalten gegenüber diesen beeinflussen könnte. Die erste Studie untersuchte Androstadienoneffekte auf aufmerksamkeitsabhängige, motorische Reaktionen sowie auf Verhaltenstendenzen. Motorisches Annäherungs- und Vermeidungsverhalten als Reaktion auf freudige und ärgerliche Gesichter wurden bei 30 Frauen und 32 Männern untersucht. Während diese entweder Androstadienon oder einen Kontrollduft inhalierten, ohne zu wissen welchen, mussten sie so schnell wie möglich einen Joystick jeweils wegdrücken oder zu sich heranziehen, sobald entweder ein freudiges oder ärgerliches Gesicht auf einem Computerbildschirm erschien. Im Vergleich zum Kontrollduft beschleunigte Androstadienon die Reaktionsgeschwindigkeit spezifisch auf ärgerliche Gesichter unabhängig von der Bewegungsrichtung. Dies könnte damit zusammenhängen, dass menschlicher Körpergeruch, die Quelle von Androstadienon, das Angstsystem im menschlichen Gehirn aktiviert. Die schnellere Reaktion auf ärgerliche Gesichter durch den endogenen Geruch könnte dementsprechend auf eine erhöhte Bereitstellung von Aufmerksamkeitsressourcen für angstverwandte Stimuli, wie ärgerliche Gesichter, zurückzuführen sein. Zusätzlich zeigten die Ergebnisse, dass Androstadienon unabhängig vom Emotionsausdruck die Annäherungstendenz bei Männern zu den Gesichtern erhöht. Diese Beobachtung könnte durch die in einer früheren Studie gezeigte Eigenschaft von Androstadienon, die Attraktivitätsbewertungen anderer Personen zu erhöhen, erklärt werden. Demnach könnte der endogene Duftstoff bei Männern die Bewertung von Gesichtern verbessern und folglich die Bereitschaft, sich sozialen Stimuli anzunähern, erhöhen. Im Gegensatz zu Männern zeigten Frauen schon in der Kontrollbedingung eine stärkere Annäherungstendenz zu Gesichtern. Folglich könnte Androstadienon diese verstärkte Tendenz bei Frauen eher aufrechterhalten als verstärken. In der zweiten Studie wurden kortikale Reaktionen, d.h. ereigniskorrelierte Gehirnpotentiale (EKPs), auf soziale und nicht-soziale visuelle Bilder bei 28 Frauen, die Androstadienon rochen, und bei 23 Frauen die einem Kontrollduft ausgesetzt waren, mit Elektroenzephalographie untersucht. Allen Teilnehmerinnen war der Inhalt des applizierten Duftstoffes nicht bewusst. Vier verschiedene Bildkategorien, d.h. echte Gesichter, Bilder mit Paaren, Bilder mit Gruppen von Menschen und Bilder ohne Personen, mit jeweils positiver, negativer und neutraler Valenz wurden verwendet, um den Wirkkontext von Androstadienon zu klären. Androstadienon beeinflusste die Hirnreaktionen auf diese Stimuli nicht signifikant. Explorative Analysen deuteten aber an, dass Androstadienon die späte EKP Komponente, P300, beeinflussen kann. Während in der Kontrollgruppe ärgerliche Gesichter größere P300 Amplituden auslösten als freudige Gesichter, erzeugten in der Androstadienongruppe alle emotionalen Ausdrücke ähnliche P300 Amplituden. Dies könnte andeuten, dass Androstadienon attentive oder evaluative Prozesse bei der Gesichtsverarbeitung beeinflusst, was aber durch weitere Studien bestätigt und präzisiert werden muss. Die dritte Studie untersuchte Androstadienoneffekte auf zentralnervöse Prozesse der Gesichtsverarbeitung von Männern. EKPs auf freudige, ärgerliche und neutrale Cartoongesichter wurden aufgezeichnet, während 16 Männer entweder Androstadienon oder den Kontrollduft inhalierten, ohne jeweils zu wissen welchen. Androstadienon verstärkte eine späte neuronale Reaktion, die P300 Komponente, auf alle Gesichter signifikant. Diese Komponente des ereigniskorrelierten Potenzials spiegelt die Bereitstellung von Aufmerksamkeit auf wichtige Stimuli wider. Androstadienon könnte folglich die zentralnervöse Verarbeitung von Gesichtern erleichtern, indem es Aufmerksamkeit auf diese Stimuli lenkt. Zusammenfassend stützen die genannten Ergebnisse die Annahme, dass Androstadienon ein aktives soziales Chemosignal ist. In winzigen, bewusst nicht wahrnehmbaren Mengen beeinflusste es kortikale und motorische Reaktionen. Demzufolge scheint Androstadienon tatsächlich auf kognitive Funktionen wie Aufmerksamkeit zu wirken und deshalb unser Verhalten beeinflussen zu können. Die aktuellen Ergebnisse unterstützen auch die Annahme, dass Androstadienon ein menschliches Modulatorpheromon ist, das in einem speziellen Kontext unser Verhalten und eine psychologische Reaktion moduliert und Stimulussensitivität und die Sensor-Motor-Integration ändert. Dennoch müssen diese Interpretationen als vorläufig betrachtet werden bis die dargestellten Ergebnisse auch unter ökologisch validen Bedingungen repliziert werden konnten. Außerdem muss berücksichtigt werden, dass in dieser Doktorarbeit einige frühere Ergebnisse und einige Hypothesen bezüglich kommunikativer Effekte von Androstadienone nicht bestätigt werden konnten. Deshalb kann die Annahme, dass Androstadienon ein aktives Chemosignal ist, immer noch in Frage gestellt werden. Auch ob Androstadienon tatsächlich als menschliches Pheromon bezeichnet werden sollte bleibt offen. KW - Pheromon KW - Aufmerksamkeit KW - Mensch KW - Androstadienon KW - ereigniskorreliertes Potential KW - Antwortverhalten KW - Geruchssinn KW - androstadienone KW - humans KW - olfaction KW - pheromone KW - behavior KW - attention Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72292 ER - TY - THES A1 - Weiland, Romy T1 - Facial reactions in response to gustatory and olfactory stimuli in healthy adults, patients with eating disorders, and patients with attention-deficit hyperactivity disorder T1 - Mimische Reaktionen auf Geschmacks- und Geruchsreize bei gesunden Erwachsenen, Patientinnen mit Essstörungen und Patientinnen mit Aufmerksamkeitsdefizit/Hyperaktivitätsstörung N2 - The aim of this project was to investigate whether reflex-like innate facial reactions to tastes and odors are altered in patients with eating disorders. Qualitatively different tastes and odors have been found to elicit specific facial expressions in newborns. This specificity in newborns is characterized by positive facial reactions in response to pleasant stimuli and by negative facial reactions in response to unpleasant stimuli. It is, however, unclear, whether these specific facial displays remain stable during ontogeny (1). Despite the fact that several studies had shown that taste-and odor-elicited facial reactions remain quite stable across a human’s life-span, the specificity of research questions, as well as different research methods, allow only limited comparisons between studies. Moreover, the gustofacial response patterns might be altered in pathological eating behavior (2). To date, however, the question of whether dysfunctional eating behavior might alter facial activity in response to tastes and odors has not been addressed. Furthermore, changes in facial activity might be linked to deficient inhibitory facial control (3). To investigate these three research questions, facial reactions in response to tastes and odors were assessed. Facial reactions were analyzed using the Facial Action Coding System (FACS, Ekman & Friesen, 1978; Ekman, Friesen, & Hager, 2002) and electromyography. N2 - Ziel dieses Projektes war es zu untersuchen, ob spezifische, mimische Reaktionen auf Geschmacks- und Geruchsreize bei Patientinnen mit Essstörungen verändert sind. Bei Neugeborenen rufen qualitativ verschiedene Geschmacksreize und Geruchsreize spezifische mimische Reaktionsmuster hervor. Diese Spezifität zeichnet sich infolge angenehmer Reize durch positive mimische Reaktionen und infolge unangenemher Reize durch negative mimische Reaktionen aus. Es ist jedoch unklar, ob diese spezifischen Reaktionsmuster während der ontogentischen Entwicklung stabil bleibe (1). Trotz der Befunde, dass geschmacks- und geruchsinduzierte mimische Reaktionen bei Erwachsenen relativ stabil bleiben, erlauben spezifische Forschungsfragen und verschiedene Methoden nur einen begrenzten Vergleich zwischen den Studien. Darüber hinaus könnten die gustofazialen Reaktionsmuster bei Patientinnen mit Essstörungen verändert sein (2). Diese Frage wurde jedoch bisher nicht untersucht. Weiterhin könnten Veränderungen in den mimischen Reaktionen bei essgestörten Patientinnen durch eine defizitäre Hemmungskontrolle bedingt sein (3). Zur Klärung dieser drei Fragestellungen wurden mimische Reaktionen auf Geschmacks- und Geruchsreize erfasst. Die Mimikanalyse erfolgte mit Hilfe des Facial Action Coding Systems (FACS, Ekman & Friesen, 1978; Ekman, Friesen, & Hager, 2002) und des Elektromyogramms. KW - Mimik KW - Geschmack KW - Geruch KW - Essstörung KW - Aufmerksamkeits-Defizit-Syndrom KW - facial expressions KW - gustation KW - olfaction KW - eating disorders KW - ADHD Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51759 ER - TY - JOUR A1 - Chen, Yi-chun A1 - Gerber, Bertram T1 - Generalization and discrimination tasks yield concordant measures of perceived distance between odours and their binary mixtures in larval Drosophila JF - The Journal of Experimental Biology N2 - Similarity between odours is notoriously difficult to measure. Widely used behavioural approaches in insect olfaction research are cross-adaptation, masking, as well as associative tasks based on olfactory learning and the subsequent testing for how specific the established memory is. A concern with such memory-based approaches is that the learning process required to establish an odour memory may alter the way the odour is processed, such that measures of perception taken at the test are distorted. The present study was therefore designed to see whether behavioural judgements of perceptual distance are different for two different memory-based tasks, namely generalization and discrimination. We used odour-reward learning in larval Drosophila as a study case. In order to challenge the larvae's olfactory system, we chose to work with binary mixtures and their elements (1-octanol, n-amyl acetate, 3-octanol, benzaldehyde and hexyl acetate). We determined the perceptual distance between each mixture and its elements, first in a generalization task, and then in a discrimination task. It turns out that scores of perceptual distance are correlated between both tasks. A re-analysis of published studies looking at element-to-element perceptual distances in larval reward learning and in adult punishment learning confirms this result. We therefore suggest that across a given set of olfactory stimuli, associative training does not grossly alter the pattern of perceptual distances. KW - discrimination KW - drosophila melanogaster KW - generalization KW - memory KW - olfaction KW - perception Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121625 VL - 217 IS - 12 ER - TY - JOUR A1 - Heisswolf, Annette A1 - Ulmann, Sandra A1 - Obermaier, Elisabeth A1 - Mitesser, Oliver A1 - Poethke, Hans J. T1 - Host plant finding in the specialised leaf beetle Cassida canaliculata: an analysis of small-scale movement behaviour N2 - 1. Host plant finding in walking herbivorous beetles is still poorly understood. Analysis of small-scale movement patterns under semi-natural conditions can be a useful tool to detect behavioural responses towards host plant cues. 2. In this study, the small-scale movement behaviour of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) was studied in a semi-natural arena (r = 1 m). In three different settings, a host (Salvia pratensis L., Lamiales: Lamiaceae), a non-host (Rumex conglomeratus Murr., Caryophyllales: Polygonaceae), or no plant was presented in the centre of the arena. 3. The beetles showed no differences in the absolute movement variables, straightness and mean walking speed, between the three settings. However, the relative movement variables, mean distance to the centre and mean angular deviation from walking straight to the centre, were significantly smaller when a host plant was offered. Likewise, the angular deviation from walking straight to the centre tended to decline with decreasing distance from the centre. Finally, significantly more beetles were found on the host than on the non-host at the end of all the trials. 4. It is concluded that C. canaliculata is able to recognise its host plant from a distance. Whether olfactory or visual cues (or a combination of both) are used to find the host plant remains to be elucidated by further studies. KW - Käfer KW - Blattkäfer KW - Ampfer KW - Wiesensalbei KW - Arena experiment KW - Coleoptera KW - Chrysomelidae KW - olfaction KW - Rumex KW - Salvia pratensis KW - vision KW - walking Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49485 ER - TY - JOUR A1 - Kropf, Jan A1 - Rössler, Wolfgang T1 - In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee JF - PLoS ONE N2 - The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level. KW - action potentials KW - olfaction KW - honeybee Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175869 VL - 13 IS - 1 ER - TY - JOUR A1 - Brill, Martin F. A1 - Meyer, Anneke A1 - Roessler, Wolfgang T1 - It takes two—coincidence coding within the dual olfactory pathway of the honeybee JF - Frontiers in Physiology N2 - To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code). KW - olfaction KW - mushroom body KW - insect KW - coincidence KW - multi-electrode-recording KW - antennal lobe Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126179 VL - 6 IS - 208 ER - TY - JOUR A1 - Falibene, Augustina A1 - Roces, Flavio A1 - Rössler, Wolfgang T1 - Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants JF - Frontiers in Behavioural Neuroscience N2 - Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MB) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning when ants still showed plant avoidance MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. KW - Acromyrmex ambiguus KW - leaf-cutting ants KW - avoidance learning KW - olfaction KW - honeybee KW - microglomeruli KW - mushroom body KW - synaptic plasticity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148763 VL - 9 IS - 84 ER - TY - JOUR A1 - Falibene, Agustina A1 - Roces, Flavio A1 - Rössler, Wolfgang T1 - Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants JF - Frontiers in Behavioral Neuroscience N2 - Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. KW - microglomeruli KW - olfaction KW - avoidance learning KW - leaf-cutting ants KW - acromyrmex ambiguus KW - synaptic plasticity KW - mushroom body Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125522 VL - 9 IS - 84 ER - TY - THES A1 - Niewalda, Thomas T1 - Neurogenetic analyses of pain-relief learning in the fruit fly T1 - Neurogenetische Analyse von pain-relief Lernen in der Fruchtfliege N2 - All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. Völler and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry. N2 - Tiere müssen lernen, damit sie sich in ihrer Umwelt zurechtfinden und die Herausforderungen meistern können, die ihre Umwelt ihnen bietet. Dies gilt auch für Taufliegen im larvalen und erwachsenen Stadium, wie man mit der Pavlovschen Konditionierung zeigen kann. Der Schwerpunkt dieser Doktorarbeit liegt auf verschiedenen Aspekten der Lernfähigkeit von Taufliegen. In meinem Hauptprojekt erforsche ich die Arten von Lernprozessen, die stattfinden, wenn die Fliegen entweder den Beginn oder das Ende eines Elektroschocks mit einem Duft assoziieren. Wenn Taufliegen einen Duft wahrnehmen, der von einem Elektroschock gefolgt wird, lernen sie, dass dieser Duft Schmerz signalisiert, und werden ihn konsequenterweise in Zukunft vermeiden. Man kann die Abfolge dieser beiden Reize so umkehren, dass der Duft auf den Elektroschock folgt. Durch ein solches Training wird der Duft für die Fliegen zu einem Signal für das Ende des schmerzhaften Elektroschocks und sie werden, wenn sie diesen Duft später wieder einmal wahrnehmen, auf ihn zugehen. Ich berichte im ersten Kapitel über Experimente, die qualitative und parametrische Besonderheiten der letzteren Lernform untersuchen. Ich finde heraus, dass (i) das Lernen über das Ende des Elektroschocks echtes assoziatives Lernen ist, (ii) dass es eine relativ hohe Anzahl von Trainingsdurchgängen erfordert, (iii) dass Kontext-Schock-Training unbedeutend für anschließendes Schock-Duft-Lernen ist. Im zweiten Kapitel gehe ich der Frage nach, ob die genannten beiden Typen von Lernvorgängen gemeinsame genetische Determinanten haben. Was die Genetik anbelangt, teste ich die Lernfähigkeit eines Synapsin-Mutantenstammes, dem das Synapsinprotein fehlt. Lernen über den Beginn des Elektroschocks ist stark reduziert, und Lernen über das Ende des Elektroschocks fehlt gänzlich. Die Reduzierung des Synapsinproteins im Fliegengehirn durch RNAi resultiert in mutantenähnlichen Phänotypen. Dieser Befund bestätigt, dass der Lernphänotyp auf einem Mangel an Synapsin beruht. Die Expression von Synapsin im Pilzkörper der Mutante erlaubt der Fliege, wieder normal zu lernen; dies weist auf die Hinlänglichkeit von Synapsin im Pilzkörper für beide Arten von Lernen hin. In einem weiteren Projekt untersuche ich den Zusammenhang zwischen Wahrnehmung und Physiologie in erwachsenen Taufliegen. Ich benutze Duft-Schock-Konditionierungsexperimente, um basierend auf dem Verhalten der Tiere Ähnlichkeitsränge von Düften zu ermitteln, und finde eine einheitliche Rangfolge der untersuchten Düfte für verschiedene Generalisierungs- und Diskriminierungs-Aufgaben von unterschiedlichem Schwierigkeitsgrad. Schließlich erforsche ich in Kooperation mit T. Völler and A. Fiala, wie der Grad der Verhaltensähnlichkeit /-unähnlichkeit von Düften mit der Physiologie der Fliege in Beziehung steht. Ich kombiniere die Verhaltensdaten mit Daten, die mittels funktioneller Bildgebung unter Verwendung genetisch codierter Kalziumsensoren erhalten wurden. Diese Methode erlaubt, Aktivitätsmuster, die von den untersuchten Düften verursacht werden, entweder in den sensorischen Neuronen oder in den Projektionsneuronen des Antennallobus zu messen. Unsere Interpretation der Ergebnisse ist, dass die Verhaltensähnlichkeit der Düfte auf Ebene der Interneuronen im Antennallobus organisiert wird. Weiterhin erforsche ich die Wirkung von Kochsalz (Natriumchlorid) auf das Reflexverhalten und die Rolle von Natriumchlorid als Belohnung oder Bestrafung im Larvenlernen. Larven der Taufliege verändern ihr Reflexverhalten in Gegenwart von Natriumchlorid in hohem Maße. Larven bevorzugen niedrige Salzkonzentrationen gegenüber einem Substrat ohne Salz; erhöht man die Salzkonzentration jedoch, kehrt sich das Wahlverhalten ins Gegenteil um, bis die Tiere das salzhaltige Substrat stark vermeiden. Ein ähnlicher Zusammenhang zwischen Konzentration und Verhalten wird auch für das Fressverhalten gefunden: Larven fressen von einem Substrat mit niedrigen Salzkonzentrationen geringfügig mehr, von einem Substrat mit hohen Salzkonzentrationen jedoch deutlich weniger als von einem Kontrollsubstrat ganz ohne Salz. Was das Lernen betrifft, wirken relativ schwache Salzkonzentrationen als Belohnung, während hohe Salzkonzentrationen als Bestrafung wirken. Interessanterweise ist die Verhaltens-Konzentrations-Kurve von Reflexverhalten (Wahlverhalten, Fressverhalten) verglichen mit assoziativem Lernen in Richtung höherer Konzentrationen verschoben. Diese Dissoziation könnte eine verschiedenartige Sensitivität der Schaltkreise widerspiegeln. KW - Taufliege KW - Assoziatives Gedächtnis KW - Lernverhalten KW - Synapsine KW - Molekulargenetik KW - Drosophila melanogaster KW - olfaction KW - learning KW - memory KW - synapsin Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65035 ER - TY - THES A1 - Masek, Pavel T1 - Odor intensity learning in Drosophila T1 - Duftintensitätslernen bei Drosophila N2 - It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory. N2 - Assoziatives olfaktorisches Lernen bei Drosophila wurde ursprünglich als die Paarung eines Duftes mit einem elektrischen Bestrafungsreiz beschrieben. Seit langem ist dazu bekannt, daß Drosophila nicht nur lernen kann zwei Düfte zu unterscheiden, sondern auch verschiedene Konzentrationen desselben Dufts. Jedoch wird in den meisten auf diese Art durchgeführten Experimenten die Duftintensität weitestgehend ignoriert. - Für das olfaktorische Kurzzeitgedächtnis wurde ein biochemisches Modell vorgeschlagen, welches sich hauptsächlich auf die bekannte cAMP-Signalkaskade stützt. Es wurde gezeigt, dass die Pilzkörper (mushroom bodies, „MB“) notwendig und hinreichend für diese Art der Gedächtnisbildung sind und ein MB-Modell für Duftlernen und Kurzzeitgedächtnis konnte etabliert werden. Interessanterweise sollten Fliegen nach diesem Modell Konzentrationsunterschiede nur in einer Richtung lernen können. Sie würden den gelernten Duft nur gegenüber einer niedrigeren Konzentration wiedererkennen. In der vorliegenden Doktorarbeit habe ich das konzentrationsabhängige Duftlernen und seine Beziehung zum MB-Modell untersucht. Dabei hat sich gezeigt, dass die Fliege eine Gedächtnisspur für Geruchsintensität anlegt. Um den Unterschied zwischen dem Lernen einer Qualität und dem einer Intensität des gleichen Duftes hervorzuheben, habe ich versucht, den Reiz, der eigentlich von der Fliege gelernt wird, zu charakterisieren. Dies führte zu der Schlussfolgerung, dass die Fliege während des Trainings alle in diesem Zeitabschnitt präsentierten Reize erlernt. Erst der dem Training folgende Test scheint den Gebrauch der verfügbaren Information festzulegen. Diese Erkenntnis ist eine wesentliche Grundlage um zwischen dem Testergebnis und dem, was die Fliege gelernt hat zu unterscheiden. Ich habe außerdem gezeigt, daß das Konzentrationslernen eine Form assoziativen Lernens ist und, dass entgegen der Erwartung nach dem MB-Modell eine Symmetrie zwischen den Lernwerten für die hohe und niedrige Konzentration besteht. Es gibt keinen Beweis dafür, dass Fliegen eine Vielfalt von Konzentrationen desselben Duftes als ein und dieselbe (Duft-)Qualität wahrnehmen. Die Ergebnisse legen vielmehr nahe, dass sich bei einer größeren Veränderung der Intensität eines Duftes für die Fliege (wie in vielen Fällen auch beim Menschen) seine Qualität verändert. Demzufolge ist mit jedem Geruchsstoff mehr als nur eine Fliegen-subjektive Geruchsqualität verbunden. Fliegen zeigen andererseits in engen Grenzen Konzentrationsinvarianz. Sie generalisieren zwischen Konzentrationen eines Duftes innerhalb einer Konzentrationsdekade. Deshalb ist das Konzept des Konzentrationslernens nur für ein begrenztes Konzentrationsspektrum innerhalb der Grenzen der Konzentrationsinvarianz relevant. Des weiteren habe ich gezeigt, dass unter besonderen Bedingungen zwei chemisch verschiedene Düfte generalisiert werden können. Möglicherweise haben die beiden Düfte hinreichend "ähnliche" oder gleiche Fliegen-subjektive Qualität und können nur nach der Intensität unterschieden werden. Die Fliege hat die Fähigkeit im Test Unterschiede einerseits in der Qualität und andererseits in der Intensität des Reizes zu ermitteln. Die Art und Weise, wie der Reiz analysiert und verarbeitet wird, erfordern ein Konzept zweier getrennter Gedächtnisse. Dementsprechend habe ich eine neue Gedächtnisart, ein sogenanntes Duftintensitätsgedächtnis (OIM) vorgeschlagent und versucht dieses neben anderen olfaktorischen Gedächtnissen einzuordnen. Das OIM ist unabhängig bezüglich einiger Bestandteile des bekannten cAMP-Signalwegs und stellt höchstwahrscheinlich den rutabaga-unabhängigen Teil des Zwei-Düfte-Lernens dar. Das rutabaga-abhängige Duftgedächtnis benötigt qualitativ verschiedene Duftreize. Das OIM reicht lediglich für eine suboptimale Leistung aus, funktioniert aber in den Grenzen der Konzentrationsinvarianz, innerhalb derer die Diskriminierung und damit auch das Lernen der Duftqualität nicht möglich sind. Das OIM scheint wie die Duftqualitätsgedächtnisse die Pilzkörper zu benötigen. Aber die Art der Speicherung ist von der der Duftqualitätsgedächtnisse verschieden. Fliegen können viele Duftqualitäten zu einem bestimmten Zeitpunkt aus dem Gedächtnis abrufen, jedoch interferiert ein neu gebildetes Gedächtnis eines bestimmten Duftes mit dem bereits gespeicherten OIM. Außerdem ist das OIM für nur 1-3 Stunden stabil, was erheblich kürzer als beim Duftgedächtnis ist. KW - Taufliege KW - Geruchswahrnehmung KW - Gedächtnis KW - Lernen KW - Intensität KW - Olfaktorik KW - Lernen KW - Gedächtnis KW - Drosophila KW - intensity KW - olfaction KW - memory KW - learning KW - Drosophila Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15546 ER - TY - THES A1 - Brill, Martin Fritz T1 - Processing and plasticity within the dual olfactory pathway in the honeybee brain T1 - Verarbeitung und Plastizität in der dualen olfaktorischen Bahn im Gehirn der Honigbiene N2 - In their natural environment animals face complex and highly dynamic olfactory input. This requires fast and reliable processing of olfactory information, in vertebrates as well as invertebrates. Parallel processing has been shown to improve processing speed and power in other sensory systems like auditory or visual. In the olfactory system less is known about olfactory coding in general and parallel processing in particular. With its elaborated olfactory system and due to their specialized neuroanatomy, honeybees are well-suited model organism to study parallel olfactory processing. The honeybee possesses a unique neuronal architecture - a dual olfactory pathway. Two mirror-imaged output projection neuron (PN) pathways connect the first olfactory processing stage, the antennal lobe (analog to the vertebrates olfactory bulb, OB), with the second, the mushroom body (MB) known to be involved in orientation and learning and memory, and the lateral horn (LH). The medial antennal lobe-protocerebral tract (m-APT) first innervates the MB and thereafter the LH, while the other, the lateral-APT (l-APT) projects in opposite direction. The neuroanatomy and evolution of these pathways has been analyzed, yet little is known about its physiology. To analyze the function of the dual olfactory pathway a new established recording method was designed and is described in the first chapter of this thesis (multi-unit-recordings). This is now the first time where odor response from several PNs of both tracts is recorded simultaneously and with high temporal precision. In the second chapter the PN odor responses are analyzed. The major findings are: both tracts responded to all tested odors but with differing characteristics. Since recent studies describe the input to the two tracts being rather similar, the results now indicate differential odor processing along the tracts, therefore this is a good indicator for parallel processing. PNs of the m-APT process odors in a sparse manner with delayed response latencies, but with high odor-specificity. PNs of the l-APT in contrast respond to several odor stimuli and respond in general faster. In some PN originating from both tracts, characteristics of odor-identity coding via response latencies were found. Analyzing the over-all dynamic range of the PNs both l- and m-APT PNs were tested over a large odor concentration range (10-6 to 10-2) (3. chapter). The PNs responded with linear and non-linear correlation of the response strength to the odor concentration. In most cases the l-APT is comparatively more sensitive to low odor concentrations. Response latency decreases with increasing odor concentration in both tracts. Alternative coding principles and elaboration on the hypothesis whether the dual olfactory pathway may contribute coincidental innervation to the next higher-order neurons, the Kenyon cells (KC), is subject of the 4. chapter. Cross-correlations and synchronous responses of both tracts show that in principle odors may be coded via temporal coding. Results suggest that odor processing is enhanced if both tracts contribute to olfactory coding together. In another project the distribution of the inhibitory neurotransmitter GABA (gamma-aminobutyric acid) was measured in the bee’s MB during adult maturation (5. chapter). GABAergic inhibition is of high importance in odor coding. An almost threefold decrease in the total amount of GABAergic innervation was found during adult maturation in the l- and m-APT target region, in particular at the change in division of labor during the transition from a young nurse bee to an older forager bee. The results fit well into the current understanding of brain development in the honeybee and other social insects during adult maturation, which was described as presynaptic pruning and KC dendritic outgrowth. Combining anatomical and functional properties of the bee’s dual olfactory pathway suggests that both rate and temporal coding are implemented along two parallel streams. Comparison with recent work on analog output pathways of the vertebrate’s OB indicates that parallel processing of olfactory information may be a common principle across distant taxa. N2 - In ihrem natürlichen Lebensraum sind Lebewesen mit komplexen und hoch dynamischen olfaktorischen Reizen konfrontiert, was eine schnelle und zuverlässige Duft-Verarbeitung sowohl bei Insekten als auch bei Wirbeltieren erfordert. Im visuellen oder auditorischen System wird sensorischer Eingang durch Parallel-Verarbeitung schneller und effektiver an höhere Gehirnzentren übertragen und verarbeitet. Im olfaktorischen System ist generell und im speziellen über Parallel-Verarbeitung noch wenig bekannt. Die Honigbiene stellt jedoch mit ihrer hoch spezialisierten Duftwahrnehmung und ihrem Duft und Pheromon gesteuerten Verhalten aufgrund ihrer Neuroanatomie einen besonderen Modelorganismus für die Erforschung der Duftverarbeitung und insbesondere der olfaktorischen Parallel-Verarbeitung dar. Honigbienen besitzen „duale olfaktorische Bahnen“, die ausschließlich in Hymenopteren (Bienen, Ameisen, Wespen) als Merkmal ausgeprägt sind. Gebildet werden sie aus zwei spiegelbildlichen Projektions-Neuronen (PN) Ausgangs-Trakten, die das erste olfaktorische Verarbeitungs-Zentrum, den Antennal-Lobus (vergleichbar mit dem Olfaktorischen Bulbus der Wirbeltiere, OB) mit sekundären Verarbeitungszentren, dem Pilzkörper (MB) und dem lateralen Horn (LH) verbinden. Der mediale Antennal-Lobusprotocerebrale Trakt (m-APT) innerviert erst den MB und dann das LH, der laterale Trakt (l-APT) projiziert in umgekehrter Reihenfolge. Der MB ist bei Orientierung, Lernen und Gedächtnis involviert, über die Funktion des LH ist in der Biene noch wenig bekannt. Über die Neuroanatomie und Evolution dieser dualen Bahnen wurde viel geforscht, die Funktion und damit ihre Physiologie sind allerdings noch unzureichend aufgeklärt. Die vorliegende Dissertation beschäftigt sich deshalb mit der Duftverarbeitung im Bienengehirn und im Speziellen mit Parallelverarbeitung in der Olfaktorik. Für die Aufklärung wurde eine neu entwickelte und in dieser Dissertation beschriebene Messmethode etabliert (1. Kapitel). Mit Hilfe dieser Messapparatur (Multi-Unit Recordings) ist es jetzt das erste Mal möglich, hoch-zeitaufgelöst simultan aus beiden Trakten mehrere PNs auf unterschiedliche Düfte hin zu untersuchen. Das 2. Kapitel beschäftigt sich eingehender mit der Analyse von Duftanworten der PN. Die Hauptergebnisse sind, dass beide Trakte auf alle getesteten Düfte regieren, dies aber mit unterschiedlichen Charakteristiken tun. Da gezeigt wurde, dass beide Trakte ähnlichen olfaktorischen Eingang erhalten, die Trakte aber Düfte unterschiedlich verarbeiten, stellen diese Ergebnisse ein erstes Indiz für Parallelverarbeitung im olfaktorischen System der Biene dar. M-APT PN reagieren mit Zeitverzögerung und duftspezifisch, d.h. selektiver auf Düfte. Dagegen reagieren l-APT PN vergleichsweise schneller und duft-unspezifischer auf die in dieser Arbeit verwendeten Düfte. In einigen PN beider Trakte wurde gefunden, dass die PN Duft-Identitäten über duftspezifische Antwort-Latenzen abgebildet werden können. Um Aufschluss über die Gesamtdynamik der PN zu gewinnen, wurden l- und m-APT PN Antworten über weite Duftkonzentrationen (10-6 bis 10-2) hin untersucht (3. Kapitel). Die PN reagierten mit linearen und nicht-linearen Korrelationen. Zudem sind in den meisten Fällen l-APT PN bei schwachen Duftkonzentrationen sensitiver. Die Antwort-Latenz ist zur Duftkonzentration in beiden Trakten negativ-proportional. Alternative Kodierungsmöglichkeiten und die Ausarbeitung der Hypothese, dass die dualen Bahnen eine Koinzidenzverschaltung auf die nächst höheren Neurone, die Kenyon Zellen (KC), bilden könnten, wird im 4. Kapitel behandelt. Dazu zeigen Kreuz-Korrelationsanalysen und synchrone Antwortmuster aus beiden Trakten, dass prinzipiell Düfte auch über Zeit-Kodierung verarbeitet werden können. Generell zeigt sich, dass die dualen olfaktorischen Bahnen eine verbesserte Duftkodierung gegenüber einem Trakt gewährleisten. In einem weiteren Ansatz wurde die alterskorrelierte Plastizität der inhibitorischen GABAergen (gamma-Aminobuttersäure) Innervation im Pilzkörper der Biene während der Adult-Reifung bestimmt (5. Kapitel). Inhibition ist für olfaktorische Kodierung sehr wichtig. Eine fast dreifache Reduktion in der Gesamtmenge von GABA wurde während der Adult-Reifung in beiden Zielregionen der dualen olfaktorischen Bahn gleichermaßen gefunden. Dieser Effekt wurde mit einer insgesamt halbierten GABA Innervierung ebenfalls im visuellen Innervationsgebiet des MB gefunden. Die Ergebnisse passen gut in das derzeitige Verständnis von Adultplastizität der Pilzkörper in der Honigbiene, in denen eine Ausdünnung (Pruning) präsynaptischer Endigungen von PN und ein Auswachsen von KC-Dendriten beschrieben wurde. Aus den neuroanatomischen und physiologischen Eigenschaften der dualen olfaktorischen Bahnen lässt sich schlussfolgern, dass Düfte sowohl über Raten- als auch Zeit-Kodierung bis hin zu Koinzidenz-Verschaltungen verarbeitet werden können. Zudem zeigen derzeitige Arbeiten über analoge Ausgangs-Trakte im OB von Wirbeltieren, dass Parallelverarbeitung im olfaktorischen System ein allgemeines Kodierungsprinzip über weit entfernte Taxa zu sein scheint. KW - Tierphysiologie KW - Geruchssinn KW - Nervennetz KW - Nervenzelle KW - Biene KW - Antennallobus KW - antennal lobe KW - olfaction KW - multi-unit recording KW - Insekten KW - Geruch KW - Physiologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85600 ER - TY - THES A1 - Schmalz, Fabian Dominik T1 - Processing of behaviorally relevant stimuli at different levels in the bee brain T1 - Die Verarbeitung verhaltensrelevanter Stimuli auf unterschiedlichen Ebenen im Bienengehirn N2 - The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system. In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others. This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs. The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor. The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations. Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region. N2 - Honigbienen und Hummeln sind aufgrund ihrer Lebensweise auf die ständige Verarbeitung sensorischer Eindrücke abiotischen und biotischen Ursprungs angewiesen. Als eusoziale Insekten ist hierbei für beide Arten die Wahrnehmung innerartlicher Kommunikation wie auch die Verarbeitung multisensorischer Einflüsse während der Nahrungssuche von essenzieller Bedeutung. Um die daraus resultierenden vielfältigen Herausforderungen erfolgreich bewältigen zu können, verfügen Honigbienen und Hummeln über eine fortschrittliche Verarbeitung olfaktorischer und visueller Reize. In beiden Arten beginnt die Geruchsrezeption an den Antennen, welche geschlechtsspezifisch von zahlreichen olfaktorischen Sensillen besetzt sind. Diese beinhalten olfaktorische Rezeptorneurone (ORN), in welchen die Expression der Geruchsrezeptoren stattfindet. Axone der ORNs laufen dabei gebündelt über vier verschiedene Trakte in den Antennallobus (AL), das erste olfaktorische Verarbeitungszentrum im Bienengehirn. Im AL verschalten ORNs mit lokalen Interneuronen und Projektionsneuronen (PN) in kugelförmigen Strukturen, den sogenannten Glomeruli. PNs leiten die olfaktorische Information daraufhin über zwei charakteristische Trakte, den medialen und lateralen Antennallobustrakt, in den Pilzkörper (MB), das Verarbeitungszentrum für die Integration sensorischer Eindrücke und Gedächtnisbildung. Im Calyx der Honigbiene, der sensorischen Eingangsregion des MB, bilden die Endköpfchen der PNs synaptische Verbindungen mit Kenyonzellen (KC), den primären Nervenzellen im MB. Die Innervation des Calyx durch die PNs ist dabei spezifisch in drei verschiedenen Zonen organisiert, nämlich in Lippe, Hals und basalen Ring. Während die Lippe vornehmlich olfaktorische Information von PNs aus dem AL erhält, wird der basale Ring zusätzlich auch von visuellen PNs, welche Informationen aus dem optischen Lobus einbringen, angesteuert. Der basale Ring der Honigbiene wird dabei Ort der ersten räumlichen Integration visuellen und olfaktorischen Eingangs. Wiederum ähnlich zum unimodalen Eingang der Lippe, bezieht auch der Hals des Calyx grundsätzlich nur sensorischen Eingang einer Modalität, nämlich visuelle Information von PNs aus dem optischen Lobus. KCs verschalten im weiteren Verlauf die olfaktorischen und visuellen Informationen an Pilzkörperausgangsneurone (MBON). In einem bisher kaum erforschten Vorgang wird diese multimodale Information dabei verarbeitet und dann mithilfe der MBONs in verschiedene Bereiche des Gehirns geleitet, z.B. in die protocerebralen Loben, die kontralaterale Gehirnhemisphäre oder das Zentralgehirn. Diese Dissertation ist zweigeteilt und behandelt zuerst (i) die geschlechtsspezifische Verarbeitung olfaktorischer Reize in Hummeln und bespricht im zweiten Teil (ii) neue Einblicke in die neuronale Weiterverarbeitung visueller Reize durch MBONs in der Honigbiene. Manuskript 1 untersucht die Abläufe der Geruchsverarbeitung von Bombus terrestris und beschreibt geschlechtsspezifische Unterschiede. Hierbei wurden sowohl verhaltensbasierte als auch elektrophysiologische Methoden genutzt um die Wahrnehmung ökologisch relevanter Duftstoffe (Komponenten unterschiedlicher Pflanzendüfte oder Pheromone) auf drei verschiedene Weisen zu untersuchen, nämlich in der Peripherie, im AL und mittels olfaktorischer Konditionierung. Wir fanden in beiden Geschlechtern eine robuste Gedächtnisbildung nach absoluter Konditionierung und eine ausgeprägte Generalisierung anhand der Kohlenstoffkettenlänge der präsentierten Duftstoffe. Anders stellten sich die Ergebnisse der elektroantennographischen (EAG) Untersuchungen dar. Hier zeigten sowohl Drohnen als auch Arbeiterinnen neuronale Aktivität mit spezifischen Unterschieden zwischen den Stimuli, aber auch zwischen den Geschlechtern auf, z.B. löste die Applikation von Citronellol eine deutliche verringerte Reaktion in der EAG Aktivität der Drohnen aus. Interessanterweise zeigten auch extrazelluläre Ableitungen im AL stimulus- und geschlechtsspezifische Unterschiede, jedoch in unterschiedlicher Konstellation als in den EAG-Experimenten. Besonders Farnesol und 2,3-Dihydrofarnesol wiesen vor allem bei Arbeiterinnen eine deutliche Repräsentation in der neuronalen Aktivität auf; ein Alleinstellungsmerkmal welches für Farnesol bereits in einer früheren Studie beschrieben wurde. Diese explizit unterschiedliche neuronale Darstellung von Farnesol und 2,3-Dihydrofarnesol in der Peripherie und im AL führt zu der Annahme, dass die rezeptive Darstellung eines Stimulus in der Peripherie keine zuverlässigen Rückschlüsse über die neuronale Repräsentation in höheren Zentren oder die ökologische Relevanz zulässt. Im zweiten Manuskript stehen MBONs der Honigbiene im Fokus, um mehr Einblicke in die visuelle Verarbeitung im VL zu erlangen. Bisher können MBONs in folgende Klassen unterteilt werden: Visuelle, olfaktorische und multimodale MBONs, welche sensitiv für beide Modalitäten sind. Kern dieser Arbeit ist, mittels extrazellulärer Ableitungen festzustellen, welche zusätzlichen Aspekte eines visuellen Stimulus in diesem zentralen Verarbeitungszentrum repräsentiert sind. Dabei konnte zum ersten Mal gezeigt werden, dass Informationen über die Wellenlänge und die Intensität des Lichtstimulus im VL erhalten sind. Im weiteren Verlauf konnte eine Spezifizierung der bisherigen Kategorisierung visueller und multimodaler MBONs in drei weitere Untergruppen vollzogen werden: MBONs die spezifisch die Intensität, die Identität und dein Eingang eines Stimulus kodieren. Des Weiteren zeigte vor allem die Gruppe der Identitäts-MBONs eine bemerkenswerte Kategorisierung von UV-Licht. Diese neuen Erkenntnisse bestätigen die Ansicht, dass der MB, als Zentrum für sensorische Integration, eine Kategorisierung der verarbeiteten Eindrücke vornimmt und diese daraufhin auf die MBONs verschalten wird. Abschließend diskutiere ich Unterschiede in der peripheren Repräsentation von Stimuli und ihrer späteren neuronalen Verarbeitung. Hier zeige ich, die Aktivität von Farnesol in MS1 und UV-Licht MS2 als Beispiel nehmend, dass die periphere Repräsentation eines Stimulus keine sicheren Schlussfolgerungen über die nachfolgend induzierte neurale Aktivität oder die verhaltensrelevante Bedeutung zulässt. Im weiteren Verlauf werden dabei die Einflüsse konservierter Strukturen und plastischer Änderungen auf die Abläufe der sensorischen Peripherie oder der höheren Verarbeitungszentren, wie dem AL oder dem MB gezeigt. Obwohl der MB, das Zentrum für multimodale Integration und Gedächtnis, hinsichtlich seiner Rolle in der Geruchswahrnehmung ausgiebig erforscht ist, gibt es bezüglich der visuellen Verarbeitung oder dem Einfluss anderer Modalitäten noch ungeklärte Abläufe und Fragen. Wenngleich auch hier die Kenntnis speziell über die visuelle Verarbeitung im MB stetig zunimmt, sollten zukünftige Arbeiten mithilfe weiterer Methoden den MB Eingang und Ausgang explizit auf den Einfluss weiterer Modalitäten untersuchen, um so ein umfassenderes Bild über die Abläufe multimodaler Integration zu erhalten. KW - Biene KW - Elektrophysiologie KW - bee KW - electrophysiology KW - olfaction KW - vision KW - multi-unit recording KW - Olfaktorik KW - Sehen KW - Multi-Unit Aufnahmen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288824 ER -