TY - THES A1 - Beyer, Matthias T1 - Untersuchungen zu photovernetzbaren und biokompatiblen (Hybrid-)Polymeren T1 - Investigations of photo-curable and biocompatible (hybrid) polymers N2 - Die Arbeit beschäftigte sich mit Untersuchungen zu photovernetzbaren und –strukturierbaren (Hybrid-)Polymeren, um Grundlagen für die Herstellung von Trägergerüststrukturen (Scaffolds) auf Basis photovernetzbarer (Hybrid-)Polymere zu legen und damit in der Zukunft patientenindividuelle medizinische Werkstücke, die beliebig durch Zwei-Photonen-Absorptionsprozesse in drei Dimensionen strukturierbar sind, für die Regenerative Medizin zu ermöglichen. Dafür wurden zunächst die zum Teil in der Literatur unbekannten unterschiedlichen Monomere Acr-1, MAcr-2, Acr-3, MAcr-4 und DiMAcr-5 synthetisiert. Dabei handelt es sich um einfache und gut vergleichbare organische (Meth-)Acrylat-Monomere, die mono- bzw. difunktional in ihren photochemisch reaktiven Gruppen sind. Die synthetisierten organischen Monomere Acr-3, MAcr-4 und DiMAcr-5 wurden in verschiedenen Verhältnissen mit dem anorganisch-organischen Methacrylat-basierten Hybridpolymers ORMOCER® I kombiniert. Die (Co-)Polymerisation der unterschiedlichen Formulierungen wurde in situ mittels UV-DSC-Untersuchung verfolgt. Dabei wurden bei diesen Untersuchungen zum Teil deutliche Unterschiede im Reaktionsverlauf der einzelnen Materialformulierungen festgestellt. So konnten zum Beispiel bei Monomermischungen ein schnellerer Polymerisationsverlauf sowie eine höhere maximale Polymerisationsrate als bei den jeweiligen Einzelkomponenten beobachtet werden (Synergieeffekt). Diese Beobachtungen wurden anhand der Monomerstruktur (unterschiedliche Diffusionsfähigkeiten im vergelten, aber noch nicht erstarrten System durch Mono- bzw. Difunktionalität) und der Art der funktionellen Gruppe (Acrylat- bzw. Methacrylatgruppe) erklärt. Weiterhin wurden der Einfluss des verwendeten Photoinitiators und dessen eingesetzte Konzentration auf die photochemisch-induzierte Copolymerisation eines ausgewählten Systems beleuchtet. Dazu wurden verschiedene Einflussfaktoren der Initiation betrachtet. Neben der eingesetzten Initiatorkonzentration spielen auch die Absorptionseigenschaften, die umgebende Matrix und die Initiatoreffizienz eine große Rolle für den Reaktionsverlauf der photochemischen Vernetzung. Weiterhin wurden die Photoinitiatoren in unterschiedlichen Konzentrationen eingesetzt, um die dadurch induzierte Veränderung des Reaktionsverlaufs zu betrachten. Aus den Einflüssen auf die Reaktionsverläufe konnte geschlossen werden, dass diese sowie auch die maximale Polymerisationsrate RP,max und damit die Reaktionskinetik nicht in jedem Fall linear mit der Initiatorkonzentration zunehmen muss. Erste generelle 2PP-Strukturierungen wurden zudem an ausgewählten Material-formulierungen durchgeführt. Dabei zeigte sich, dass alle Formulierungen bei bestimmten Parameterkombinationen aus Laserleistung und Schreibgeschwindigkeit mittels 2PP strukturiert werden konnten. Außerdem wurden bei den verschiedenen Formulierungen bei gleicher Parameterkombination unterschiedliche Strukturbreiten und damit erstmalig unterschiedliche Strukturvolumina beobachtet. Diese unterschiedlichen Volumina konnten erstmalig mit den unterschiedlichen Reaktionsverläufen der Materialformulierungen korreliert werden. Dabei zeigte sich, dass das chemische Wechselwirkungsvolumen von der Funktionalität der eingesetzten Materialkomponenten abhängig ist, da davon der Grad an Quervernetzung abhängt, der bestimmt, ob ausreichend vernetzte Voxel und Strukturen entstehen, die durch einen Entwicklungsschritt nicht mehr entfernt werden. Im zweiten Teil der Arbeit wurde ein biokompatibles und photostrukturierbares Hybridpolymer (RENACER® MB-I) entwickelt, welches mittels 2PP strukturiert werden konnte, was anhand kleiner wie auch großer Scaffolds mit dem Material demonstriert wurde. Dazu wurde das kommerziell erhältliche Alkoxysilan-Molekül O-(Methacryloxyethyl)-N-(triethoxysilylpropyl)urethan als Precursor verwendet. Durch eine bewusst unvollständige Hydrolyse- und Kondensationsreaktion konnte aus dem Precursorsilan ein Hybridpolymerharz hergestellt werden, welches anorganisch vorverknüpft war. Weiterhin wies es sowohl als Volumenpolymer, als auch in Form von Scaffold-Strukturen eine sehr gute Biokompatibilität auf. Um zu untersuchen, ob die im Hybridpolymer enthaltenen prinzipiell degradierbaren Gruppen unter physiologischen Bedingungen tatsächlich degradieren und Teile aus dem Polymerverband herausgelöst werden können, wurde ein selbstentwickeltes Verfahren für stationäre Degradations-untersuchungen in phosphat-gepufferter Saline (PBS, pH = 7,4) verwendet. Die durch die photochemische Polymerisation neu entstandenen Ketten besaßen ihrer Natur gemäß keine hydrolysierbaren Einheiten, weshalb das Hybridpolymer nicht vollständig degradieren kann. Es konnte jedoch ein prinzipieller Zugang zu Gerüstträgerstrukturen auf Basis photovernetzbarer Polymere für die Regenerative Medizin geschaffen werden. N2 - The objective was the investigation of photo-curable and patternable (hybrid) polymers for applications in regenerative medicine, in order to explore basic principles for scaffold fabrication by two-photon polymerization. This would enable patient-individual medical implants. As model systems for subsequent investigations, the monomers Acr-1, MAcr-2, Acr-3, MAcr-4, and DiMAcr-5 were synthesized. These compounds are well comparable organic (meth)acrylate monomers with a functionality of one and two, respectively. The monomers Acr-3, MAcr-4, and DiMAcr-5 were combined with a well-known methacrylate-based inorganic-organic hybrid polymer ORMOCER® I in different molar ratios. After preparation of the monomers and their formulations with ORMOCER® I introducing defined amounts of photoinitiator Irgacure® 369 into the material systems, the materials’ reaction was monitored in situ by photo-DSC investigations. In particular, the effect of the different monomer ratios on the copolymerization behavior was studied in more detail. A higher maximum polymerization rate and, therewith, a higher reaction speed was found for all formulations of monomer mixtures in contrast to the corresponding individual monomers (synergy effect). Moreover, by comparing the various organic monomers, considerable differences could be identified in between acrylates and methacrylates as well as for the mono- and difunctional species. These effects were explained by means of the type of their photochemically organically cross-linkable functional groups and thus their resulting reactivity as well as by the monomer structure and functionality itself, resulting in different diffusion abilities of mono-, oligo- and polymeric species within gelled systems. Furthermore, the influence of several photoinitiators and the initiator concentration on the photochemically induced copolymerization was investigated. Besides the initiator concentration, also the initiators’ absorption properties, the resin matrix and the initiators’ efficiency play an important role for the reaction profile of the photochemical cross-linking. All different photoinitiators were introduced into the model system in three different concentrations to explore the induced alterations on the reaction profile. For some of the investigated initiators, the maximum polymerization rate RP,max and, therewith, the overall reaction kinetics increased with increasing photoinitiator concentration, but for other initiators, the maximum polymerization rate RP,max was lowered at increased initiator concentrations. Thus, a general relationship between the photoinitiator concentration and the maximum polymerization rate RP,max could not be identified. First structures were generated out of selected mixtures by two-photon polymerization in order to demonstrate the novel materials’ ability of being patterned in three dimensions. Three dimensional structures were generated with specific parameter combinations of laser power and writing speed, whereas each parameter set corresponds to an individual exposure dose deposited in the materials’ volume. In particular, different structure widths were observed for different material formulations fabricated with the same parameter sets. Thus, it was possible for the first time to experimentally observe different chemical interaction volumes. These interaction volumes were correlated to the different reaction profiles of the material formulations, which were received via 1PP photo-DSC measurements. It was shown that the structure volume depends on the functionality of the employed monomers, because their degree of cross-linking depends on their functionality. The degree of cross-linking which results upon polymerization determines, whether a structure maintains stable during the subsequent development process. In the second part of this work, a biocompatible and photo-patternable hybrid material was developed. Commercially available O-(methacryloxyethyl)-N-(triethoxysilylpropyl)-urethane was chosen for an intentional incomplete hydrolysis and condensation reaction in order to receive a RENACER® resin, which includes functional groups for subsequent organic cross-linking. This material showed a very good patterning performance, which was demonstrated by a series of structures and scaffolds. The material yields a good biocompatibility. In order to investigate, whether the hydrolysable functional groups within the hybrid polymer actually degrade under physiological conditions, a procedure routine for stationary degradation studies in phosphate-buffered saline (PBS) was developed. The carbon chain generated through photochemical cross-linking, has no hydrolyzable groups and naturally cannot be degraded, resulting in a hybrid polymer which is not completely degradable. However, a principal access to scaffolds for regenerative medicine on the basis of photo-curable polymers was accomplished which was the purpose of this work. KW - Photopolymerisation KW - Zwei-Photonen-Polymerisation KW - Copolymerisation KW - Reaktionskinetik KW - Biokompatibilität KW - Photo-DSC KW - Kinetik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97131 ER - TY - THES A1 - Bonfig, Jochen T1 - Tantalmodifikationen auf Implantat-Stahl für kardiale Stents, Herstellung und Charakterisierung T1 - Tantalum modifications on stainless steel implants for cardiac stents, manufacture and characterization N2 - Mit Hilfe der PVD-Technik (Physical Vapour Disposition) hergestellte Tantal/Tantaloxidschichten auf Edelstahlplättchen wurden bezüglich ihrer mechanischen Eigenschaften und ihrer Biokompatibilität untersucht. Dabei kamen als Untersuchungsmethoden die Rasterelektronenmikroskopie (REM), das XRD (X-Ray Diffraction) und die Sekundär-Neutralteilchen-Massen-Spektrometrie (SNMS) zum Einsatz. Abschließend wurden die Repassivierungseigenschaften der Oberfläche des Systems Stahl/Tantal/Tantaloxid unter mechanischer Belastung bestimmt. N2 - Tantalum/tantalum oxid layers on small sheets of stainless steel produced by physical vapour deposition (PVD) were analysed relative to their mechanical properties and biocompatibility. The analysis were made by SEM (Scanning Electron Microscopy), XRD (X-Ray Diffraction) and SNMS (Secondary Neutral Mass Spectrometry). Finally the repassivation of the surface in the system stainless steel/tantalum/tantalum oxid under mechanical stress was proved. KW - Stent KW - Tantal KW - Edelstahl KW - Biokompatibilität KW - stent KW - tantalum KW - stainless steel KW - biocompatibility Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13807 ER - TY - THES A1 - Strehle, Marion A. T1 - Mikroskopische und spektroskopische Charakterisierung biologisch relevanter Oberflächen T1 - Microscopic and spectroscopic characterization of biologically relevant surfaces N2 - In dieser Arbeit werden biologisch relevante Oberflächen untersucht, die in der Medizin bzw. in der Biologie eine wichtige Rolle spielen. Die Proteinadsorption auf Implantat-Oberflächen wurde charakterisiert, um wichtige Informationen über den Adsorptionsprozess zu erhalten. Das Fernziel hierbei ist, durch ein umfassendes Wissen über diesen für die Implantation wichtigen Schritt Biomaterialien mit möglichst hoher Gewebeverträglichkeit zu entwickeln. Die Verteilung von Propolis auf der Wachs-Oberfläche von Bienenwaben wurde untersucht, um mehr über dessen Nutzen, der noch nicht vollständig aufgeklärt ist, zu erfahren und um auf mögliche Auswirkungen einer veränderten Wabenstruktur auf die Kommunikation der Honigbienen Rückschlüsse ziehen zu können. Das Ziel des ersten Teils dieser Arbeit war, das Adsorptionsverhalten der Proteine Fibrinogen, Albumin und Fibronektin auf Titandioxid, einem in der Medizin häufig als Implantat eingesetzten Material, zu studieren. Die Adsorption von Proteinen auf der Oberfläche von Implantaten ist ein wichtiger Schritt für die Gewebeverträglichkeit bzw. Biokompatibilität dieser Materialien. Es wurden sowohl die räumliche Verteilung der Proteine auf den Implantat-Oberflächen als auch die durch die Adsorption hervorgerufenen strukturellen Veränderungen der Proteine untersucht. Als Methoden wurden hierfür die Laser-Raster-Mikroskopie (LSM), die Kraftfeldmikroskopie (AFM) sowie die Raman-Spektroskopie eingesetzt. Durch ein umfassendes Wissen über den Adsorptionsprozess der Proteine auf Implantat-Materialien können die Oberflächen der Implantate dahingehend verändert werden, dass es zu einer besseren Proteinadsorption und dadurch zu einer noch geringeren Rate an Abstoßungsreaktionen kommt. Die in dieser Arbeit vorgestellten Ergebnisse können einen Teil zum Verständnis des Adsorptionsprozesses beitragen. Das Ziel des zweiten Teils dieser Arbeit war es, die chemische Zusammensetzung von Propolis (dem Kittharz der Bienen) und Wabenwachs von Apis mellifera carnica Pollm. sowie die räumliche Verteilung von Propolis auf den Waben-Oberflächen zu untersuchen. Hierzu wurden die Raman-Spektroskopie und Raman-Mapping eingesetzt. Es wurden zunächst Raman-Spektren von Propolis-Proben sowie Raman-Spektren von charakteristischen Standardsubstanzen des Propolis aufgenommen. Das Propolis-Spektrum sowie das Wachs-Spektrum wurden durch eine Auswahl an Standardsubstanzen simuliert. Um herauszufinden, welche Harze von den Bienen gesammelt und als Propolis im Stock verwendet werden, wurden von einigen Harzen, die als Propolis-Quellen in Betracht kommen, Raman-Spektren aufgenommen. Es wurde auch analysiert, ob die Kettenlängen der Alkane, aus denen die Wachse bestehen, einen Einfluss auf die Raman-Spektren hat. Mittels Raman-Mapping wurde schließlich die räumliche Verteilung von Propolis auf der Waben-Oberfläche untersucht. Die hier charakterisierten biologisch relevanten Oberflächen spielen eine wichtige Rolle in der Medizin und in der Biologie. Die Analyse mit mikroskopischen und spektroskopischen Methoden verschafft einen Einblick in die Prozesse, die sich an diesen Oberflächen abspielen. Die Proteinadsorption auf Implantat-Oberflächen sind für die Implantationsmedizin von Bedeutung. Es werden ständig neue Materialien entwickelt, die eine möglichst gute Biokompatibilität aufweisen sollen. Erkenntnisse über die Prozesse, die hierfür eine Rolle spielen, helfen bei der Entwicklung neuer Materialien. Die Verteilung von Propolis auf den Wachs-Oberflächen hat einen Einfluss auf die Materialbeschaffenheit der Waben. Dies könnte die Vibrationsweiterleitung beim Schwänzeltanz der Honigbienen, der für deren Kommunikation von Bedeutung ist, beeinflussen. Die Verteilung des Propolis auf den Waben konnte für kleine Ausschnitte gezeigt werden. Inwiefern eine Propolisschicht auf den Stegen der Waben die Vibrationsweiterleitung tatsächlich beeinflusst, muss durch weiterführende Experimente herausgefunden werden. N2 - In this work biologically relevant surfaces are investigated, which play an important role in medicine and biology, respectively. The protein adsorption on implant surfaces has been characterized in order to gain important information about the adsorption process. The future goal lies in the development of biomaterials with the highest possible tissue compatibility on the basis of an extensive knowledge about this step which is essential for the implantation. The distribution of propolis on the wax surface of honeycomb was studied to reveal information about its use, which is so far not fully known, and to draw conclusions if a changed honeycomb structure has any influence on the communication of honeybees. The aim of the first part of this work was to study the adsorption behavior of the proteins fibrinogen, albumin and fibronectin on titanium dioxide, a commonly used implant material in medicine. The protein adsorption on an implant surface is an important process for the materia's tissue or biocompatibility. The spatial distribution of the protein on the implant surfaces was studied as well as structural changes of the protein due to adsorption. As methods laser scanning microscopy (LSM), atomic force microscopy (AFM) and Raman spectroscopy were employed. With a profound knowledge about the adsorption process of proteins on implant materials the implant surfaces can be altered in such a way that a better protein adsorption takes place and the amount of repulsive reactions is lowered. The results presented in this work can contribute to a better understanding of such an adsorption process. The goal of the second part of this work was the investigation of the chemical composition of propolis and of the honeycomb wax from the honeybee Apis mellifera carnica Pollm. Furthermore the spatial distribution of propolis on the honeycomb surfaces was determined employing Raman spectroscopy and Raman mapping. First of all Raman spectra of characteristic propolis samples and characteristic standard components of propolis have been recorded. The propolis spectrum as well as the wax spectrum were simulated through a selection of various standard components. To discover the kind of resins collected by the bees and used as propolis in the hive, Raman spectra of certain resins which can be considered as the propolis source were measured. Additionally, a possible influence of the chain length of the alkanes forming the waxes on the Raman spectra was investigated. The spatial resolution of propolis on the honeycomb surface has been studied by means of Raman mapping. The biologically relevant surfaces characterized in this work play an important role in medicine and biology. The analysis employing microscopic and spectroscopic methods gives insight into the processes on the surface. Protein adsorption on implant surfaces a re important for implantation medicine. All the time new materials are developed with an improved biocompatibility. Knowledge about the processes taking place are of relevance for the development of new materials. The distribution of propolis on wax surfaces has an impact on the material condition of the honeycomb. This might be of interest for the vibration prolongation during the wagging dances of the honeybees, which is important for their communication. The propolis distribution on the honeycomb has been determined for some small sectors. In further experiments the role of the propolis layer on the ligaments of the honeycomb for the vibration prolongation needs to be investigated. KW - Implantat KW - Oberfläche KW - Biokompatibilität KW - Biokompatibilität KW - Nano-Partikel KW - Proteine KW - Propolis KW - Raman KW - biocompatibility KW - nano particle KW - protein KW - propolis KW - Raman Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5775 ER - TY - THES A1 - Kirsch, Artur T1 - Klinische Performance und Biokompatibilität der PUREMA® H-Dialysemembran T1 - Clinical performance and biocompatibility of the PUREMA® H dialysis membrane N2 - Im Rahmen einer randomisierten, prospektiven Cross-over-Studie wurden während der Hämodialyse an chronisch dialysepflichtigen Patienten standardisiert Parameter der Dialyseeffektivität und Biokompatibilität einer neuen, mittels einem Polyelektrolytadditiv modifizierten Dialysemembran, PUREMA® H, im Vergleich zu einer Kontrolldialysemembran, Helixone®, gemessen. Im Vergleich zur Kontrollmembran wies die PUREMA® H-Membran eine verbesserte Entfernung kleinmolekulargewichtiger Eiweiße incl. 2-Mikroglobulin und eine insbesondere für die Komplementaktivierung optimierte Biokompatibilität auf. N2 - In a prospective, randomized, cross-over study on maintenance dialysis patients, a new polyelectrolyte modified hemodialysis membrane, PUREMA® H, was compared to a control membrane, Helixone®, during haemodialysis. Parameters of dialysis efficacy and biocompatibility were measured in a standardized manner. Compared to control, PUREMA® H showed a significantly higher removal of low-molecular-weight proteins, including beta 2-microglobulin and an optimized biocompatibility particulary in regard to complement system activation. KW - Hämodialyse KW - Klinisches Experiment KW - Kontrollierte klinische Studie KW - Chronische Niereninsuffizienz KW - Biokompatibilität KW - Performance KW - Dialysatorleistung KW - terminale Niereninsuffizienz KW - haemodialysis KW - biocompatibility KW - dialysis membrane KW - end-stage renal disease KW - performance Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34717 ER - TY - THES A1 - Devine, Eric T1 - Increased removal of protein bound uremic toxins through reversible modification of the ionic strength during hemodiafiltration T1 - Erhöhte Elimination proteingebundener Urämietoxine durch reversible Modifikation der Ionenstärke während der Hämodiafiltration N2 - A large number of metabolic waste products accumulate in the blood of patients with renal failure. Since these solutes have deleterious effects on the biological functions, they are called uremic toxins and have been classified in three groups: 1) small water soluble solutes (MW < 500 Da), 2) small solutes with known protein binding (MW < 500 Da), and 3) middle molecules (500 Da < MW < 60 kDa). Protein bound uremic toxins are poorly removed by conventional hemodialysis treatments because of their high protein binding and high distribution volume. The prototypical protein bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (pCS) are associated with the progression of chronic kidney disease, cardiovascular outcomes, and mortality of patients on maintenance hemodialysis. Furthermore, these two compounds are bound to albumin, the main plasma protein, via electrostatic and/or Van-der-Waals forces. The aim of the present thesis was to develop a dialysis strategy, based on the reversible modification of the ionic strength in the blood stream by increasing the sodium chloride (NaCl) concentration, in order to enhance the removal of protein bound substances, such as IS and pCS, with the ultimate goal to improve clinical patient outcomes. Enhancing the NaCl concentration ([NaCl]) in both human normal and uremic plasma was efficient to reduce the protein bound fraction of both IS and pCS by reducing their binding affinity to albumin. Increasing the ionic strength was feasible during modified pre-dilution hemodiafiltration (HDF) by increasing the [NaCl] in the substitution fluid. The NaCl excess was adequately removed within the hemodialyzer. This method was effective to increase the removal rate of both protein bound uremic toxins. Its ex vivo hemocompatibility, however, was limited by the osmotic shock induced by the high [NaCl] in the substituate. Therefore, modified pre-dilution HDF was further iterated by introducing a second serial cartridge, named the serial dialyzers (SDial) setup. This setting was validated for feasibility, hemocompatibility, and toxin removal efficiency. A better hemocompatibility at similar efficacy was obtained with the SDial setup compared with the modified pre-dilution HDF. Both methods were finally tested in an animal sheep model of dialysis to verify biocompatibility. Low hemolysis and no activation of both the complement and the coagulation systems were observed when increasing the [NaCl] in blood up to 0.45 and 0.60 M with the modified pre-dilution HDF and the SDial setup, respectively. In conclusion, the two dialysis methods developed to transitory enhance the ionic strength in blood demonstrated adequate biocompatibility and improved the removal of protein bound uremic toxins by decreasing their protein bound fraction. The concepts require follow-on clinical trials to assess their in vivo efficacy and their impact on long-term clinical outcomes. N2 - Eine große Zahl von Stoffwechselprodukten akkumuliert im Blut urämischer Patienten mit Nierenversagen. Da diese Moleküle schädliche Wirkungen auf die biologischen Funktionen haben, werden sie als Urämietoxine bezeichnet. Man teilt sie in drei Gruppen ein: 1) kleine wasserlösliche Substanzen (MG < 500 Da), 2) kleine, proteingebundene Substanzen (MG < 500 Da), 3) Mittelmoleküle (500 Da < MG < 60 kDa). Proteingebundene Urämietoxine werden wegen ihrer starken Proteinbindung und ihres Verteilungsvolumen durch klassische Hämodialyseverfahrens nur schlecht entfernt. Die prototypischen proteingebundenen Urämietoxine Indoxylsulfat (IS) und p-Cresylsulfat (pCS) sind bei chronischen niereninsuffizienten Patienten mit dem Fortschreiten der Niereninsuffizienz, Herz-Kreislauf-Erkrankungen und der Mortalität verbunden. Außerdem sind diese beiden Toxine an Albumin, dem wichtigsten Plasmaprotein, durch elektrostatische und/oder Van-der-Waals-Kräfte gebunden. Das Ziel der vorliegenden Arbeit war es, ein Dialyseverfahren basierend auf einer reversiblen Modifikation der Ionenstärke im Blut durch Erhöhung der Natriumchlorid (NaCl)-Konzentration zu entwickeln, um die Entfernung von proteingebundenen Molekülen wie IS und pCS zu erhöhen und dadurch eine Verbesserung des klinischen Verlauf der Patienten zu erreichen. Die Erhöhung der NaCl-Konzentration ([NaCl]) sowohl in normalem als auch in urämischem menschlichem Plasma war geeignet, um den proteingebundenen Anteil von IS und pCS durch Schwächung ihrer Bindungsaffinität zu Albumin zu verringern. Die Erhöhung der Ionenstärke während einer modifizierten Prädilutions-Hämodiafiltration (HDF) konnte durch eine Erhöhung der [NaCl] in der Substitutionslösung umgesetzt werden; dabei wurde der NaCl-Überschuss innerhalb des Dialysators vollständig entfernt. Dieses Verfahren war effektiv, um die Entfernungsrate beider proteingebundenen Urämietoxine zu steigern; seine Ex-vivo-Hämokompatibilität war allerdings aufgrund des osmotischen Schocks infolge der hohen [NaCl] im Substituat begrenzt. Deshalb wurde eine Iteration der modifizierten Prädilutions-HDF durch Einbau eines zweiten, seriellen Dialysators vorgenommen, bezeichnet als serielles Dialysator System (SDial). Diese letzte Methode wurde dann bezüglich der Durchführbarkeit, der Hämokompatibilität und Toxinentfernung validiert. Durch das SDial-System konnte, verglichen mit der modifizierten Prädilutions-HDF, eine bessere Hämokompatibilität bei ähnlicher Wirksamkeit erzielt werden. Beide Methoden, modifizierte Prädilutions-HDF und SDial System, wurden abschließend in ein Tierdialysemodell mit Schafen transferiert, wobei eine zufriedenstellende Biokompatibilität demonstriert werden konnte. Beide, zur vorübergehenden Erhöhung der Ionenstärke im Blut entwickelten Dialyseverfahren zeigten bei zufriedenstellender Biokompatibilität eine verbesserte Entfernung proteingebundener Urämietoxine durch Reduktion ihrer proteingebundenen Fraktion. In einem nächsten Schritt sind klinische Studien erforderlich, die diese Konzepte bezüglich ihrer In-vivo-Wirksamkeit und ihrer langfristigen Wirkung auf den Krankheitsverlauf untersuchen. KW - Hämodiafiltration KW - Ionenstärke KW - Proteinbindung KW - Urämietoxine KW - Hämodialyse KW - Biokompatibilität KW - Ionic strength KW - protein binding KW - uremic toxin KW - hemodialysis KW - biocompatibility KW - Urämie KW - Toxin KW - Ionenstärke KW - Blut Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83583 ER - TY - THES A1 - Hösl, Daniel T1 - In vitro- Untersuchungen zur Biokompatibilität und antibakteriellen Wirksamkeit von silber-dotierten Tricalciumphosphat-Zementen T1 - In vitro- studies on the biocompatibility and antibacterial activity of silver-doped tricalcium phosphate cements N2 - Gegenstand der vorliegenden Arbeit war die Modifikation von Hydroxylapatit- und Bruschit-Zementen mit 1 % Silber. Ziel war es, den Zementen eine antibakterielle Wirksamkeit bei gleichzeitiger Biokompatibilität ohne Beeinträchtigung ihrer mechanischen Eigenschaften zu verleihen. Durch Mischung von silberdotiertem β-TCP mit Calcium-bis-dihydrogenphosphat Monohydrat (MCPM) bzw. von silberdotiertem α-TCP mit einer 2,5%-Na2HPO4-Lösung entstanden Zementformulierungen, deren Silberfreisetzung, Druckfestigkeit, Abbindezeit sowie Phasenzusammensetzung bestimmt wurde. Desweiteren wurden in vitro-Untersuchungen zur Evaluation der Zytotoxizität mittels Osteoblasten sowie der antibakteriellen Eigenschaften mittels Staph. aureus und Staph. epidermidis durchgeführt. Bei der massenspektrometrischen Analyse der Auslagerungsmedien legte Ag-Bruschit im LB-Medium mit kumulativ 184,5 µg nach 7 Tagen das höchste Freisetzungsverhalten im Vergleich zu Ag-Hydroxylapatit mit 36,8 µg an den Tag; außerdem konnte gezeigt werden, dass sich das molare Verhältnis von Ag+/Ca2+ von theoretisch 1 % bereits bei der Herstellung von Ag+-dotiertem α- bzw. β-TCP auf je 0,78 % reduziert hatte. Die Untersuchung der Phasenzusammensetzung der Zemente wies auf die für die Zemente charakteristischen Beugungsmuster hin. Peaks, die auf Silber hinweisen würden, konnten nicht nachgewiesen werden. Betrachtet man die Druckfestigkeit, konnte der silberdotierte Bruschit-Zement eine leichte Steigerung um 5,1 MPa auf 19,8 MPa erfahren, während der Ag-Hydroxylapatit-Zement nahezu eine Halbierung seiner Festigkeit um 18,5 MPa auf 22,7 MPa erfahren musste. Bei der Auswertung der Versuchsergebnisse wies Ag-Bruschit einen signifikanten bakteriziden Effekt auf, führte aber auch zu einer Reduktion der Osteoblasten auf dieser Oberfläche. Ag-Hydroxylapatit zeigte hingegen nur eine geringe Wirkung gegen die Bakterien, während die Verbindung in dieser in vitro-Studie eher biokompatibel auf die Zellen wirkte. Die in dieser Arbeit modifizierten Zemente sind aufgrund ihrer nicht einheitlichen Ergebnisse hinsichtlich der antibakteriellen Wirksamkeit sowie der wünschenswerten Biokompatibilität für den Einsatz als Knochenersatzmaterial noch nicht geeignet. Die von Ag-Bruschit freigesetzte bakterizide Silbermenge ist für eukaryotische Zellen zu hoch, sodass in weiterführenden Studien diese Freisetzung begrenzt werden müsste. N2 - The present work was the modification of hydroxyapatite and brushite cements with 1% silver. The aim was to give the cement an anti-bacterial activity simultaneously with a biocompatibility without compromising their mechanical properties. Cement formulations, of which the release of silver ions, compressive strength, setting time and phase composition were determined, emerged by mixing silver-doped β-TCP with calcium bis-dihydrogen phosphate monohydrate (MCPM) or by silver-doped α-TCP with a 2.5% Na2HPO4 solution. Furthermore, in vitro- studies were performed to evaluate the cytotoxicity by osteoblasts, and the antibacterial properties using Staph. aureus and Staph. epidermidis. In the mass spectrometric analysis of the outsourcing media, Ag brushite in LB-medium with cumulative 184.5 µg after 7 days, demonstrated the highest release behavior as compared to Ag-hydroxyapatite with 36.8 µg; it also could be shown that the molar ratio of Ag+/ Ca2+ of theoretically 1% had already reduced to 0.78% in the production of Ag+-doped α- and β-TCP. The investigation of the phase composition of the cements showed the characteristic diffraction pattern for these cements. Peaks, which would indicate silver, could not be detected. Considering the compressive strength, the silver-doped brushite cement had shown a slight increase of 5.1 MPa to 19.8 MPa, while the Ag-hydroxyapatite cement had experienced a near halving of its strength of 18.5 MPa to 22.7 MPa. When evaluating the test results, Ag-brushite presented a significant bactericidal effect, but also led to a reduction of osteoblasts on the surface. Ag-hydroxyapatite offered a little effect against the bacteria, while the compound in this in vitro- study had more biocompatible to the cells. The modified cements in this study are, due to their non-uniform results in terms of antibacterial efficacy as well as the desirable biocompatibility, not suitable for the use as a bone substitute material. The release of Ag-brushite bactericidal amount of silver for eukaryotic cells is too high, so this release should be limited in further studies. KW - Bruschit KW - Hydroxylapatit KW - Silber KW - Biokompatibilität KW - antibakteriell KW - Tricalciumphosphat KW - Knochenzement KW - brushite KW - hydroxyapatite KW - silver KW - biocompatibility KW - antibacterial Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52383 ER - TY - THES A1 - Braxein, Kay-Alexander T1 - Histologische Untersuchungen zum biologischen Verhalten verschiedener Modifikationen eines Calcium-Phosphat-Zementes im Femur und Muskel der Ratte T1 - Histological examinations about the biological behaviour of different modifications of a calcium-phosphate-cement in the femur and in muscles of the wistar rat N2 - In der hier vorliegenden Studie wurden drei verschiedene Modifikationen des Calcium-Phosphat-Zementes BoneSource® sowie Vergleichssubstanzen hinsichtlich der Überprüfung ihrer Biodegradation und Biokompatibilität untersucht und verglichen. Die histomorphologische Auswertung und Beurteilung der verschiedenen Modifikationen des Calcium-Phosphat-Zementes BoneSource® bezüglich Biodegradation, Resorption und Biokompatibilität sowie die Beurteilung einer eventuellen Osteoneogenese waren damit Gegenstand der vorliegenden Arbeit. Der Calcium-Phosphat-Zement (CPZ) BoneSource® ohne Zusätze (Versuchsgruppe 1) zeigte dabei eine Osteokonduktivität im Knochen sowie im Muskel- bzw. Weichgewebe eine Biotoleranz. Eine Resorption oder Degradation war im Unterschied zu anderen Studien nicht nachweisbar. Der Calcium-Phosphat-Zement BoneSource® in einem Volumenmischungsverhältnis 1:1 mit dem osteoinduktiven Knochenkollagen (KK) Colloss® (Versuchsgruppe 2) verhielt sich in den Arealen mit BoneSource®-Anteilen (CPZ) wie in Versuchsgruppe 1 osteokonduktiv und bioinert im Knochen und wurde im Muskel- und Weichgewebe biotoleriert. Die Areale mit Colloss® (KK) im Materialgemisch zeigen ein osteoinduktives Potenzial und damit ein bioaktives Verhalten. Es ist hier eine Osteoneogenese zu verzeichnen. Trabekel neuentstandenen Knochens waren dabei sowohl in den Knochen- als auch in den Muskelpräparaten nachweisbar. Eine vollständige knöcherne Substitution der gesetzten Defekte war nicht zu verzeichnen. Der Calcium-Phosphat-Zement BoneSource® mit 1:1-Volumenverhältnismischung mit Alpha-Tricalciumphosphat (BioBase®; Versuchsgruppe 3) führte im Vergleich zur Versuchsgruppe 1 zu einer geringfügigen Verbesserung der osteokonduktiven Eigenschaften mit histologisch nachweisbarer geringfügiger oberflächlicher Degradation und partieller lokaler Resorption. Im Vergleich zur Versuchsgruppe 2 waren diese Resorptionserscheinungen jedoch deutlich weniger ausgeprägt. Bei der Versuchsgruppe 4 wurde als Kontrollgruppe das derzeit meistverwendete nichtresorbierbare polymere Implantatmaterial Polymethylmethacrylat (PMMA; Palacos®) mitgeführt. In beiden Einsatzgebieten (Knochen und Muskel) waren die Implantate eingescheidet und wurden demzufolge biotoleriert. Bei den Knochenpräparaten liegt ein bioinertes Verhalten des Lagergewebes gegenüber PMMA vor. Bei der Versuchsgruppe 5 wurde als 2. Kontrollgruppe ein Leerdefekt präpariert, der mit Gelatine gefüllt wurde, welches bei bekannter Resorptionsfähigkeit innerhalb weniger Wochen postoperativ einen vollständigen Ersatz durch körpereigenen Knochen in den Knochenpräparaten bzw. einen Ersatz durch Narbengewebe in den Muskelpräparaten aufwies. Bei der Versuchsgruppe 6 (Kontrollgruppe) wurde eine nichtoperierte Kohorte Versuchstiere mitgeführt, um alters- und/oder diätbedingte Veränderungen abschätzen bzw. beurteilen zu können. Es fanden sich bei den Versuchstieren am Ende des Versuchszeitraumes lediglich physiologische altersbedingte Veränderungen. Die großen inneren Organe der Versuchstiere wurden histologisch untersucht, um eventuelle systemische Auswirkungen der o.g. Modifikationen des Calcium-Phosphat-Zementes BoneSource® beurteilen zu können. Dabei konnten keine pathologischen Veränderungen gefunden werden. Es liegen somit keine systemischen Auswirkungen der Implantatmaterialien vor. Im Laufe der Versuchszeit traten vereinzelt Tumore auf, die jedoch nicht den Implantatmaterialien geschuldet sind und einer spontanen Tumorgenese zugeordnet werden konnten. Spontane Todesfälle sind unabhängig von den Implantatmaterialien aufgetreten. Gemessen an der Zielsetzung sind die gefundenen Ergebnisse dieser Studie statistisch auswertbar, objektivierbar und für die Weiterentwicklung von Knochenersatzmaterialien relevant. Insbesondere wird auf die in dieser Studie nicht erfolgte Degradation von CPZ und Alpha-TCP und das osteoinduktive Potenzial des untersuchten Kollagens N2 - In this study we examined and compared three different modifications of the calcium-phosphate-cement BoneSource and also further substances in the dimensions of biodegradation and biocompatibility. The histomorphologic interpretation and assessment of different modifications of the calcium-phosphate-cement BoneSource refer to biodegradation, resorption and biocompatibility and the assessment of a possible osteogenesis were the issues of this study. The results of this study are statistically evaluatible, objective and relevant to further development of bone substitute materials. Especially we point to the nondegradation of calcium-phosphate-cements and alpha-TCP and the osteoinductive potential of the examined collagen. KW - Knochenersatzmaterial KW - Biodegradation KW - Resorption KW - Biokompatibilität KW - Calcium-Phosphat-Zement KW - bioinert KW - biotolerant KW - bioaktiv KW - Osteogenese KW - Mineralisation KW - Interface KW - bone substitute material KW - degradation KW - resorption KW - biocompatibility Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24039 ER - TY - THES A1 - Kröker, Kristin T1 - DNA-Kohlenstoffnanorohr-Konjugate - Biokompatibilität, ex vivo-Verhalten, Funktionalisierung T1 - DNA-carbon nanotube conjugates - biocompatibility, ex vivo behavior, funtionalization N2 - Einzelstrang-DNA-dispergierte und individualisierte (6,5)-chirale Kohlenstoffnanoröhren bilden als Konjugatsystem den Ausgangspunkt dieser Dissertation. Im Vordergrund stehen dabei Untersuchungen zur Biokompatibilität dieser ssDNA-SWNT-Konjugate sowie deren Verhalten nach Zellpenetration und eine Funktionalisierbarkeit zum Wirkstofftransportsystem. Das erste Projekt widmet sich in Kapitel 4 dem Studium der Konjugatstabilität unter physiologischen Bedingungen und einer Verträglichkeit gegenüber zellulären Systemen. Experimente zur Biokompatibilität werden erstmals an Nanorohrkonjugaten durchgeführt, welche nach Ultrazentrifugation im Dichtegradienten sorgfältig individualisiert vorliegen. Die umgebungssensitiven photophysikalischen Charakteristika vereinzelter (6,5)-SWNTs können zu einer Beurteilung der Konjugatintegrität in physiologischem Milieu genutzt werden. Die Stabilität von ssDNA-SWNT-Strukturen wird in Anwesenheit des Restriktionsenzyms DNase I und dem in Zellnährmedien enthaltenen protein- und nukleasereichem Serum FBS auf die Probe gestellt. In beiden Fällen kann eine ausreichende ssDNA-SWNT-Integrität attestiert werden, die eine Verwendung unter Zellkultivierungsbedingungen erlaubt. Unter Berücksichtigung verschiedener in Zellen vorliegender pH-Umgebungen werden die Konjugate ebenfalls dieser Variation ausgesetzt. Bei Vorliegen stark saurer und basischer pH-Werte kann die Integrität von ssDNA-SWNT-Konjugaten nicht gewährleistet werden, was sich durch Aggregation bemerkbar macht. Innerhalb des breiten pH-Bereichs zwischen den Werten 3 und 11 hingegen kann eine gute Stabilität bestätigt werden. Für zelluläre Anwendungen bedeutet dieser Befund keine Einschränkung, da in Kulturen lediglich neutrale bis schwach saure pH-Werte oberhalb von 4.5 zu finden sind. Nachdem die Biostabilität der ssDNA-SWNT-Konjugate gewährleistet ist, kann in Zytotoxizitätsstudien eine ex vivo-Verträglichkeit des Nanomaterials getestet werden. Erste Untersuchungen mit der Mausmakrophagenlinie J774.1 weisen wie auch ausführliche Studien gegenüber menschlichen Epithelzellen HeLa auf eine uneingeschränkte Kompatibilität in den eingesetzten Konzentrationen hin. HeLa-Zellen, die mit DGU-gereinigten Nanorohrproben behandelt werden, zeigen eine geringfügig höhere Vitalität als nach Inkubation mit einer Rohdispersion undefinierter SWNT-Bündel. Im Gesamtbild ergibt sich somit eine zufriedenstellende Biokompatibilität individualisierter ssDNA-SWNT-Konjugate, womit das in dieser Arbeit zentrale Kohlenstoffnanorohrsystem den Anforderungen für dessen biomedizinische Verwendbarkeit gerecht wird. Der Schwerpunkt weiterer Untersuchungen liegt im zweiten Projekt aus Kapitel 5 auf dem Verhalten von ssDNA-SWNT-Konjugaten nach deren Aufnahme in HeLa-Zellen. Auch hier kann die starke Sensitivität der optischen Eigenschaften individualisierter (6,5)-Kohlenstoffnanoröhren gegenüber Umgebungseinflüssen genutzt werden, um Veränderungen im Emissionsverhalten von SWNTs nach deren zellulärer Aufnahme gegenüber dem Ausgangszustand zu beobachten. Nach ausführlicher Weißlicht-, Fluoreszenz- und SWNT-Photolumineszenzmikroskopie, aus deren Resultaten eine erfolgreiche Internalisierung von ssDNA-SWNTs in HeLa-Zellen eindeutig hervorgeht, stehen PL-spektroskopische Untersuchungen der Kohlenstoffnanoröhren im Vordergrund. Durch einen Vergleich des Emissionsverhaltens der ssDNA-SWNT-Konjugate in und außerhalb von Zellen können spektrale Verschiebungen, Linienverbreiterungen und verkürzte Fluoreszenzlebensdauern nach zellulärer Aufnahme festgestellt werden. Sowohl eine Aggregation von SWNTs als auch eine Beeinflussung durch die pH-Umgebung reichen nicht für eine vollständige Erklärung des Befunds aus. Vielmehr kann die in endosomalen Kompartimenten durch das Größenverhältnis von Endosomen zu SWNTs entstehende räumliche Nähe einer großen Nanorohrmenge untereinander als Ursache für eine Veränderung der dielektrischen Umgebung und folglich des Emissionsverhaltens betrachtet werden. Durch Verwendung der Kohlenstoffnanoröhren als Marker und Sensor können ssDNA-SWNT-Konjugate in Zellen somit nicht nur lokalisiert, sondern darüber hinaus hinsichtlich einer möglichen Aggregation untersucht werden. Aus den in dieser Arbeit vorgestellten Daten kann zwar eine vollständige Aggregation der SWNTs durch deren Aufnahme in Zellen ausgeschlossen werden, sie muss jedoch in geringfügigem Ausmaß neben einer Beeinflussung durch die pH-Umgebung und die große räumliche Nähe durchaus in Betracht gezogen werden. Individualisierte ssDNA-SWNT-Konjugate können damit erstmals zeitaufgelöst PL-mikrospektroskopisch in HeLa-Zellen charakterisiert werden. Für das letzte Projekt werden in Kapitel 6 neuartige Funktionalisierungsmöglichkeiten von ssDNA-SWNT-Konjugaten zu zellulären Transportsystemen unter Erhalt der photophysikalischen Eigenschaften erforscht. Dazu soll das Dispergiermittel DNA als Kupplungsstelle für eine kovalente Anbindung eines Agenz genutzt werden. Anstelle eines Wirkstoffes werden die Untersuchungen mit einem Fluorophor als Modellverbindung durchgeführt, welcher den Vorteil einer einfachen Detektierbarkeit liefert. Prinzipiell besteht die Möglichkeit, das Oligomer mit dem Fluorophor vorzufunktionalisieren und anschließend auf die Oberfläche der SWNTs zu bringen. Als effektiver erweist sich die Methode der direkten Kupplung des Farbstoffs an bereits DNA-dispergierte SWNTs. Der Erfolg in der Präparation von FluorophorssDNA- SWNT-Konjugaten wird über die Emission des Fluorophors mit entsprechenden Referenzexperimenten gemessen. Der Versuch einer Quantifizierung liefert jedoch sehr hohe Werte, die lediglich als eine obere Grenze für die gefundene Anzahl gebundener Fluorophore pro Nanoröhre angesehen werden können. Im Verlauf des Projekts kann eine Funktionalisierbarkeit der Nanoröhren über das Dispergieradditiv DNA als neue Strategie aufgezeigt werden. Im Gegensatz zu bekannten Wirkstofftransportsystemen bietet dieser Funktionalisierungsansatz den Vorteil, dass die optischen Eigenschaften der individualisierten ssDNA-SWNT-Konjugate erhalten bleiben, welche wieder um einen gleichzeitigen Einsatz der Nanoröhren als Transporter und Marker bzw. Sensor erlauben. Die vorliegende Dissertation liefert neben dieser bisher unbekannten Funktionalisierungsstrategie neue Erkenntnisse über die Biokompatibilität speziell von individualisierten ssDNA-SWNT-Konjugaten und deren Verhalten in HeLa-Zellen. Mit diesem Wissen kann der gezielte Wirkstofftransport durch Kohlenstoffnanoröhren als biokompatibles und zellgängiges Trägersystem anvisiert werden. N2 - The key element of this thesis is a conjugate system of single-stranded DNA and individualized (6,5) single-wall carbon nanotubes. The investigations are mainly focused on the biocompatibility of ssDNA-SWNT conjugates, as well as their behavior after cell penetration and general ability to be functionalized for drug delivery. Within the first project, chapter 4 contributes to the study the conjugate stability under physiological conditions and compatibility towards cellular structures. For the first time, such biocompatibility experiments are carried out with nanotube conjugates, which are thoroughly individualized by ultracentrifugation assisted density gradient. The photophysical characteristics of isolated (6,5) SWNTs are highly sensitive towards their environment and can thus be used to evaluate the state of conjugate integrity in a physiological milieu. The stability of ssDNA-SWNT structures is tested in the presence of restriction enzyme DNase I and FBS serum, an important nutrient medium ingredient rich in proteins and nucleases. In either case, the integrity of ssDNA-SWNT conjugates is not affected. With respect to the pH variety occuring in cell structures, the conjugate stability is also investigated in acid and base milieu. Both strong acid and alkaline pH environments influence the integrity of ssDNA-SWNT, leading to aggregation of nanotubes. Conversely, good conjugate stability can be evaluated in a wide pH range between 3 and 11, revealing unlimited applicability towards cells, where the pH environment is known to vary between neutral and weakly acid pH values above 4.5. After evaluation of the biostability of ssDNA-SWNT conjugates, they have to be tested in ex vivo cytotoxicity assays. Studies are primarily carried out with murine macrophage-like cells J774.1 and in more detail with the human cervix carcinoma cell line HeLa. Both indicate no cytotoxic effects with applied SWNT concentrations. Within the HeLa cell studies, the impact of DGU preparation on SWNT cytotoxicity is a further point of interest. As a result, slightly enhanced cell viability can be observed with DGU purified samples as compared to raw dispersion consisting of non-defined SWNT bundles. Overall, ssDNA-SWNT conjugates can be assumed to be sufficiently biostable and thus suitable for biomedical applications. Further investigations in the second part of this work in chapter 5 are focused on the behavior of ssDNA-SWNT conjugates after cellular uptake. Again, the strong environmental sensitivity of optical properties of individualized (6,5) carbon nanotubes can be used to detect changes of the SWNT emission after internalization. Different techniques have been employed to visualize ssDNA-SWNT structures in HeLa cells using white light, fluorescence, and SWNT photoluminescence microscopy. By PL spectroscopy of ssDNA-SWNTs in cells spectral shifts, line-broadening and shortened lifetimes are observed when comparing SWNT emission inside and outside of cell culture. Neither nanotube aggregation nor the influence of the cell-specific pH environment are sufficient explanations for such spectral behavior. Indeed, the spatial proximity of SWNTs with each other in small sized endosomal cell compartiments is supposed to cause nanotube-nanotube interactions that change the dielectric environment and thus the emission behavior of SWNTs. Within the use of carbon nanotubes as marker and sensor, ssDNA-SWNT conjugates cannot only be localized, but also characterized, with regard to possible nanotube aggregation. The data presented in this work can, on the one hand, exclude a total aggregation of SWNTs within their cellular uptake. But, on the other hand, a small extent of aggregation, pH environmental effects, and the spatial proximity of a high amount of SWNTs in comparatively small endosomes have to be considered as factors that influence SWNT emission properties. In this study, individualized ssDNA-SWNT conjugates can be characterized via time-resolved PL microspectroscopy for the first time. The last project in chapter 6 addresses to new functionalization routes of ssDNA-SWNT conjugate with respect to drug delivery applications while retaining the photophysical characteristics. The SWNT dispersion additive DNA serves as binding site for covalent attachment of agents. For a convenient sample characterization, a fluorophor is used as model compound instead of a specific drug. In general, fluorophor-ssDNA-SWNT systems can be obtained by pre-functionalization of oligomers with dye, followed by attachment of the modified DNA on the nanotube surface. More promising, however, is the route via a direct coupling reaction of activated fluorophor molecules with specific ssDNA-SWNT conjugates. The successful sample functionalization can be evaluated from the fluorescence of the dye in comparision with corresponding control experiments. An attempt for quantification of functionalization is found to be problematic as the revealed values are too high and can thus only be regarded as upper limits for the number of fluorophors per nanotube. A new functionalization method for SWNTs can be established using noncovalently bound DNA as the coupling point. Compared to well-known drug delivery systems, the optical properties of SWNTs can be retained with this procedure, allowing the simultaneous use of nanotubes as cellular transporter and marker or sensor. In addition to the new functionalization strategy, further knowledge about biocompatibility of well-isolated ssDNA-SWNT conjugates and their behavior after cellular uptake can be obtained through this thesis. Thus, a targeted drug delivery with isolated carbon nanotubes as biocompatible and a cell penetrating carrier system could be aimed for future work. KW - Biokompatibilität KW - DNS KW - Nanopartikel KW - Funktionalisierung KW - HeLa-Zelle KW - NIR-Spektroskopie KW - Photolumineszenz KW - Kohlenstoffnanoröhre KW - Dichtegradientenultrazentrifugation KW - carbon nanotube KW - density gradient ultracentrifugation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74552 ER - TY - THES A1 - Stöckhert, Franziska T1 - Biokompatibilitätsmessungen, Anwendung und histologische Untersuchung eines Kreuzbandtransplantats aus Kollagen-I basiertem Biomaterial am Tiermodell T1 - Biocompatibility, application and histologic examination of a type I collagen based implant for reconstruction of the anterior cruciate ligament in an animal model N2 - Ziel der vorliegenden Arbeit war es, die Biokompatibilität von Kollagen I-basierten ACL-Konstrukten in-vitro und in-vivo zu überprüfen. Zudem erfolgte eine histologische Charakterisierung der Konstrukte nach sechswöchiger bzw. sechsmonatiger Versuchslaufzeit im Minipig-Tiermodell. Das Kollagen I wurde durch eine neuartige Methode aus Rattenschwänzen isoliert und zu einem Implantat geknotet und gewickelt. Die Fasern wurden mittels Proliferationsmessung, Proteinbestimmung, Zellzählung und Zellmorphologie auf in-vitro-Biokompatibilität getestet. Hier zeigte sich eine gute Biokompatibilität sowohl für γ-sterilisierte Fasern als auch für nicht sterilisierte Fasern. In der Sterilitätsüberprüfung waren nach Anpassung des Sterilisationsverfahrens weder Bakterien- noch Pilzwachstum nachweisbar. Diese Ergebnisse sind vergleichbar mit vielfältigen Studien zur Biokompatibilität von Kollagen, in denen jeweils gute Zellviabilität und –proliferation im direkten oder indirekten Kontakt mit Kollagen gezeigt werden konnte. Anschließend wurde das Konstrukt im Tierversuch direkt im Kniegelenk als vorderer Kreuzbandersatz implantiert. Nach Ablauf der Standzeit und Explantation der Kniegelenke wurden Paraffinschnittpräparate der Implantate sowie Paraffinschnittpräparate und Kunststoffschnittpräparate der ossa femora angefertigt und durchlichtmikroskopisch deskriptiv ausgewertet. Zusätzlich wurden die immunhistochemischen Färbungen Kollagen I des Schweins und der Ratte und Faktor VIII angefertigt, wobei in der Faktor VIII-Färbung zusätzlich eine quantitative Auswertung der Gefäßzahl vorgenommen wurde. Es wurde in der Kollagenfärbung ein Ersatz des Rattenkollagens durch das Schweinekollagen einhergehend mit einer hohen Zellzahl gezeigt. Eine synoviale Deckschicht und eine fortschreitende Vaskularisierung, sowie Form und Anordnung der Zellen zeigten Vorgänge des Remodeling. Innerhalb von 6 Monaten nahm die Vaskularisierung zu und neu gebildeter Geflechtknochen verengte die Bohrkanäle. Die Knochen-Implantat-Heilung war im Bohrkanal durch Sharpey´sche Fasern gekennzeichnet. Am Tunnelausgang fanden sich von sechs Wochen zu sechs Monaten Hinweise auf die fortschreitende Entwicklung einer direkten Bandinsertion. Diese Ergebnisse entsprechen weitgehend den in der Literatur beschriebenen Remodelingvorgängen bei Studien zum Thema Kreuzbandersatz. Die beginnende direkte Bandinsertion spricht für eine gute Fixation und die Einheilung begünstigende Eigenschaften des Implantates. Dies ist ein geeigneter Ansatz für weitere Untersuchungen. Von Seiten der Biokompatibilität und der Integration des Gewebes ist das Implantat zum Kreuzbandersatz geeignet. Es bleibt abzuwarten, inwieweit die erforderlichen mechanischen Eigenschaften erreicht werden können. N2 - The aim of the study was to examine the biocompatibility of type I collagen based ACL constructs in vitro and in vivo. In addition, the constructs were histologically characterized after a test period of six weeks or six months in the minipig animal model. The type I collagen was isolated from rat tails by a novel method and knotted and wrapped into an implant. The fibers were tested for in vitro biocompatibility by proliferation measurement, protein determination, cell counting and cell morphology. This showed good biocompatibility for both γ-sterilized fibers and for non-sterilized fibers. After adjustment of the sterilization process, neither bacterial nor fungal growth was detectable in the sterility check. These results are comparable to various studies on the biocompatibility of collagen, in which good cell viability and proliferation could be shown in direct or indirect contact with collagen. The construct was implanted directly in the knee joint as an anterior cruciate ligament replacement. After the explantation of the knee joints, paraffin-cut preparations of the implants as well as paraffin-cut preparations and plastic-cut preparations of the ossa femora were made and evaluated descriptively using light microscopy. In addition, the immunohistochemical stains type I collagen of the pig and the rat and factor VIII were prepared, with a quantitative evaluation of the number of vessels also being carried out in the factor VIII staining. In the collagen staining, a replacement of the rat collagen by the pig collagen was shown, along with a high cell number. A synovial cover layer and progressive vascularization, as well as the shape and arrangement of the cells showed processes of remodeling. Vascularization increased within 6 months and newly formed bone narrowed the drill channels. Bone implant healing was characterized by Sharpey fibers in the drill channel. At the tunnel exit, indications of the progressive development of a direct band insertion were found from six weeks to six months. These results largely correspond to the remodeling processes described in the literature for studies on the subject of anterior cruciate ligament replacement. The beginning of direct band insertion suggests good fixation and healing properties of the implant. This is a suitable approach for further investigations. In terms of biocompatibility and the integration of the tissue, the implant is suitable for anterior cruciate ligament replacement. To reach the mechanical properties will be the key for clinical use. KW - Kollagen KW - Kreuzband KW - Biokompatibilität Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192501 ER - TY - THES A1 - Tauböck, Tobias T1 - Analyse des Zellverhaltens auf metallischen Proben in Abhängigkeit von der Oberflächenpolarisation T1 - Analysis of the cell behaviour on metallic substrates as a function of surface polarization N2 - In der vorliegenden Studie wurde in einem in vitro-Modell der Einfluss eines elektrischen Feldes auf die Adsorption von Proteinen und Zellen getestet. Dazu wurden Elektrokammern hergestellt, in denen metallische Oberflächen während der Proteinadsorption, der Zelladsorption sowie der Protein- und Zelladsorption polarisiert wurden. Mit Hilfe dieses Versuchsaufbaus konnten elektrische Felder simuliert werden, wie sie an rauen, im Mikro- bis Nanometerbereich strukturierten Oberflächen auftreten. Als Testoberflächen dienten die im klinischen Einsatz bewährten Implantatmaterialien Stahl und Titan. Die Wirkung der angelegten Spannung (+600 mV) auf die Testparameter Proliferationsverhalten, mitochondriale Zellaktivität und intrazelluläre Proteinverteilung wurde 48 h nach Aussaat der Osteoblasten-ähnlichen Zellen (MG-63) untersucht. Mit Ausnahme der während der Proteinadsorption polarisierten Stahlplättchen konnten auf allen polarisierten Testoberflächen geringere Zellzahlen nachgewiesen werden als auf den unpolarisierten Kontrollen. Die mitochondriale Zellaktivität war auf allen polarisierten Stahloberflächen im Vergleich zu den unpolarisierten Kontrollplättchen verringert, wobei lediglich in der Versuchsreihe zur Protein- und Zelladsorption eine statistisch signifikante Abnahme ermittelt werden konnte. Auf den während der Zelladsorption polarisierten Titanoberflächen wurde ebenfalls eine verglichen mit den unpolarisierten Kontrollen geringere Stoffwechselaktivität beobachtet, während dieser Testparameter durch die bei Proteinadsorption und Protein- und Zelladsorption angelegte Spannung auf den übrigen Titanplättchen positiv beeinflusst wurde. Der Einfluss des externen elektrischen Feldes auf die intrazelluläre Proteinverteilung stellte sich nach Analyse der Immunfluoreszenzen als äußerst gering dar. Mit dem beschriebenen in vitro-Modell konnte gezeigt werden, dass ein externes elektrisches Feld das Zellverhalten sowohl direkt als auch indirekt über eine Veränderung der adsorbierten Proteinschicht beeinflussen kann. N2 - In the present study, the influence of an electric field on the adsorption of proteins and cells was tested in an in vitro model. For this purpose, electric chambers were constructed, in which metallic surfaces were polarized during protein adsorption, cell adsorption and protein and cell adsorption. Using this test set-up, electric fields appearing on rough, micro- to nanometer scale structured surfaces were simulated. Steel and titanium, which are clinically well-established, served as test surfaces. The effect of the applied potential (+600 mV) on the test parameters cell proliferation, mitochondrial cell activity and intracellular protein distribution was determined 48 h after seeding of the osteoblast-like cells (MG-63). With the exeption of during protein adsorption polarized steel platelets, on all polarized test surfaces lower cell numbers were detected than on the unpolarized controls. Mitochondrial cell activity was lower on all polarized steel surfaces compared with the unpolarized control platelets, whereas only in the test series on protein and cell adsorption a statistically significant decrease could be determined. Also on during cell adsorption polarized titanium surfaces, a lower metabolic activity was observed compared with the unpolarized controls, while this parameter was positively influenced by the applied potential during protein adsorption and protein and cell adsorption on the remaining titanium platelets. The influence of the external electric field on the intracellular protein distribution was shown to be extremely low according to the immunfluorescence analysis. With the described in vitro model, it could be shown that an external electric field can affect cell behaviour both directly and indirectly through a change of the adsorbed protein layer. KW - Biokompatibilität KW - Grenzfläche KW - Elektrisches Feld KW - Proteinadsorption KW - Zelladsorption KW - Oberflächenpolarisation KW - protein adsorption KW - cell adsorption KW - surface polarization Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29012 ER -