TY - THES A1 - Lerch, Maike Franziska T1 - Characterisation of a novel non-coding RNA and its involvement in polysaccharide intercellular adhesin (PIA)-mediated biofilm formation of \(Staphylococcus\) \(epidermidis\) T1 - Charakterisierung einer neuen nicht-kodierenden RNA und deren Beteiligung an der PIA-vermittelten Biofilmbildung von \(Staphylococcus\) \(epidermidis\) N2 - Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognised as an important cause of health care-associated infections due to catheterisation, and livestock-associated infections. The colonisation of indwelling medical devices is achieved by the formation of biofilms, which are large cell-clusters surrounded by an extracellular matrix. This extracellular matrix consists mainly of PIA (polysaccharide intercellular adhesin), which is encoded by the icaADBC-operon. The importance of icaADBC in clinical strains provoking severe infections initiated numerous investigations of this operon and its regulation within the last two decades. The discovery of a long transcript being located next to icaADBC, downstream of the regulator gene icaR, led to the hypothesis of a possible involvement of this transcript in the regulation of biofilm formation (Eckart, 2006). Goal of this work was to characterise this transcript, named ncRNA IcaZ, in molecular detail and to uncover its functional role in S. epidermidis. The ~400 nt long IcaZ is specific for ica-positive S. epidermidis and is transcribed in early- and mid-exponential growth phase as primary transcript. The promotor sequence and the first nucleotides of icaZ overlap with the 3' UTR of the preceding icaR gene, whereas the terminator sequence is shared by tRNAThr-4, being located convergently to icaZ. Deletion of icaZ resulted in a macroscopic biofilm-negative phenotype with highly diminished PIA-biofilm. Biofilm composition was analysed in vitro by classical crystal violet assays and in vivo by confocal laser scanning microscopy under flow conditions to display biofilm formation in real-time. The mutant showed clear defects in initial adherence and decreased cell-cell adherence, and was therefore not able to form a proper biofilm under flow in contrast to the wildtype. Restoration of PIA upon providing icaZ complementation from plasmids revealed inconsistent results in the various mutant backgrounds. To uncover the functional role of IcaZ, transcriptomic and proteomic analysis was carried out, providing some hints on candidate targets, but the varying biofilm phenotypes of wildtype and icaZ mutants made it difficult to identify direct IcaZ mRNA targets. Pulse expression of icaZ was then used as direct fishing method and computational target predictions were executed with candidate mRNAs from aforesaid approaches. The combined data of these analyses suggested an involvement of icaR in IcaZ-mediated biofilm control. Therefore, RNA binding assays were established for IcaZ and icaR mRNA. A positive gel shift was maintained with icaR 3' UTR and with 5'/3' icaR mRNA fusion product, whereas no gel shift was obtained with icaA mRNA. From these assays, it was assumed that IcaZ regulates icaR mRNA expression in S. epidermidis. S. aureus instead lacks ncRNA IcaZ and its icaR mRNA was shown to undergo autoregulation under so far unknown circumstances by intra- or intermolecular binding of 5' UTR and 3' UTR (Ruiz de los Mozos et al., 2013). Here, the Shine-Dalgarno sequence is blocked through 5'/3' UTR base pairing and RNase III, an endoribonuclease, degrades icaR mRNA, leading to translational blockade. In this work, icaR mRNA autoregulation was therefore analysed experimentally in S. epidermidis and results showed that this specific autoregulation does not take place in this organism. An involvement of RNase III in the degradation process could not be verified here. GFP-reporter plasmids were generated to visualise the interaction, but have to be improved for further investigations. In conclusion, IcaZ was found to interact with icaR mRNA, thereby conceivably interfering with translation initiation of repressor IcaR, and thus to promote PIA synthesis and biofilm formation. In addition, the environmental factor ethanol was found to induce icaZ expression, while only weak or no effects were obtained with NaCl and glucose. Ethanol, actually is an ingredient of disinfectants in hospital settings and known as efficient effector for biofilm induction. As biofilm formation on medical devices is a critical factor hampering treatment of S. epidermidis infections in clinical care, the results of this thesis do not only contribute to better understanding of the complex network of biofilm regulation in staphylococci, but may also have practical relevance in the future. N2 - Koagulase-negative Staphylokokken besiedeln die menschliche und tierische Haut, sowie die Schleimhäute. Durch Läsionen oder das Einbringen von medizinischen Instrumenten wie Kathetern gelangen sie in tiefere Hautschichten oder die Blutbahn und können dort schwerwiegende Infektionen auslösen, vor Allem bei Risikopersonen. Besonders Staphylococcus epidermidis hat sich als Verursacher von nosokomialen Infektionen, aber auch als Pathogen in der Tierhaltung etabliert. Die Bakterien bilden bei der Besiedlung sogenannte Biofilme aus (d.h. eine Akkumulation der Keime, die von einer extrazellulären Matrix umgeben sind). Diese Matrix besteht neben Proteinen und eDNA hauptsächlich aus einem Polysaccharid, dem interzellulären Adhäsin PIA (engl.: polysaccharide intercellular adhesin). Dieses wird durch die Ica-Proteine synthetisiert, die im icaADBC-Operon (engl.: intercellular adhesin operon) kodiert sind. Das Operon hat große Bedeutung in klinischen Stämmen und wurde daher innerhalb der letzten beiden Jahrzehnte eingehend untersucht, auch im Hinblick auf seine Regulation. In der unmittelbaren Umgebung des icaADBC-Operons, stromabwärts des icaR Gens, das für den Repressor des ica-Operons (IcaR) kodiert, wurde ein großes Transkript identifiziert, von dem vermutet wird, dass es möglicherweise an der Regulation der Biofilmbildung beteiligt ist (Eckart, 2006). Ziel dieser Arbeit war es, dieses Transkript zu charakterisieren und seine Funktion in S. epidermidis aufzudecken. Die nicht-kodierende RNA, genannt IcaZ, hat eine Länge von ~400 nt und ist spezifisch für ica-positive S. epidermidis. Sie wird in der frühen bis mittleren exponentiellen Phase temperaturabhängig exprimiert. Stromaufwärts überlappt das icaZ-Gen und dessen Promotor mit der 3' UTR vom icaR-Gen. Stromabwärts wird das icaZ-Gen vom einem Transkriptionsterminator begrenzt, der auch für das tRNAThr-4-Gen benutzt wird, das auf dem gegenüberliegenden Strang in Richtung des icaZ-Gens lokalisiert ist. Die Deletion der RNA führte zu einem makroskopisch sichtbaren Biofilm-negativen Phänotyp mit deutlich verminderter PIA Bildung. Die Biofilmzusammensetzung wurde in vitro mittels eines klassischen Kristallviolett-Assays gemessen und die Biofilmbildung in vivo in Echtzeit mittels konfokaler Mikroskopie (CLSM) betrachtet. Dabei wurde mit einer peristaltischen Pumpe ein Mediumfluss appliziert. Die Mutante zeigte klare Defekte in der initialen Adhärenz und in der Zell-Zell Adhäsion. Sie bildete im Gegensatz zum Wildtyp keinen strukturierten Biofilm aus. Zur Komplementierung des Biofilms wurde die IcaZ von einem Plasmid exprimiert und die Biofilmzusammensetzung nach 18-20 Stunden Wachstum gemessen. Die Ergebnisse dieser Untersuchungen in den verschiedenen Mutanten waren nicht eindeutig. Um die Funktion von IcaZ aufzudecken, wurden Transkriptom- und Proteomvergleiche zwischen Wildtyp und Mutante gemacht. Diese lieferten einige Hinweise, aber da der metabolische Unterschied eines Biofilmbildners zu einem Nicht-Biofilmbildner zu groß war, wurde eine direktere Methode angewandt, die induzierte Expression (Pulsexpression). Zudem wurden potentielle Interaktionspartner der IcaZ mittels computer-basierter Bindungsvorhersagen analysiert. Die icaR mRNA kristallisierte sich dabei als Target heraus und die Interaktion zwischen IcaZ und icaR mRNA wurde mit Gelshift-Assays (EMSA) untersucht. Eine Bandenverschiebung wurde mit icaR 3' UTR und mit dem icaR-5'-3' UTR-Fusionsprodukt detektiert, wohingegen keine Interaktion zwischen IcaZ und icaA mRNA stattfand. Aufgrund dieser Assays wurde vermutet, dass IcaZ die Translation von icaR in S. epidermidis reguliert. In S. aureus fehlt die nicht-kodierende RNA IcaZ und für icaR mRNA wurde eine Autoregulation gezeigt, bei der die icaR 5' UTR mit der icaR 3' UTR intramolekular oder intermolekular durch Basenpaarung interagiert, wodurch die Shine-Dalgarno Sequenz blockiert wird und es aufgrund dessen zu einer Hemmung der Translation kommt. Die Umweltfaktoren, die dazu führen sind bisher unbekannt. Der Komplex wird durch eine Endoribonuklease, RNase III, abgebaut (Ruiz de los Mozos et al., 2013). In S. epidermidis wurde eine solche Interaktion theoretisch ausgeschlossen. Experimentelle Analysen dieser Arbeit haben gezeigt, dass diese Autoregulation in S. epidermidis nicht stattfinden kann und es wird angenommen, dass IcaZ diese Regulation übernimmt. Um die Interaktion zu visualisieren wurden GFP-Reporter Plasmide generiert, die aber für weitere Experimente noch zu verbessern sind. Zusammenfassend lässt sich sagen, dass IcaZ mit der icaR mRNA interagiert, was höchstwahrscheinlich zu einer Hemmung der Translation des Repressors IcaR führt und damit letztlich PIA-Synthese und Biofilmbildung positiv reguliert. Zusätzlich wurde gefunden, dass Ethanol die Expression der IcaZ-RNA induziert, während NaCl nur schwache Effekte zeigte und Glucose keinen Einfluss auf die Expression von icaZ hatte. Ethanol ist ein Bestandteil von Desinfektionsmitteln, die in Krankenhäusern verwendet werden und ist bekannt dafür Biofilmbildung auszulösen. Da die Bildung von Biofilmen auf medizinischen Geräten kritisch ist und diese die Behandlung von S. epidermidis Infektionen erschweren, tragen die Ergebnisse dieser Arbeit nicht nur zu einem besseren Verständnis des komplexen Netzwerks der Biofilmregulation bei, sondern haben möglicherweise auch praktischen Nutzen in der Zukunft. KW - Biofilm KW - Staphylococcus epidermidis KW - Non-coding RNA KW - Hospitalismus KW - icaADBC KW - Nosocomial Infections KW - Polysaccharide intercellular adhesin (PIA) KW - Biofilm formation KW - non-coding RNA KW - ncRNA KW - Nosokomiale Infektionen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155777 ER - TY - THES A1 - Batzilla, Christoph Friedemann T1 - Untersuchungen zur Biofilmbildung und zum Quroum-sensing in Staphylococcus epidermidis T1 - Investigations on biofilm formation and quorum sensing in Staphylococcus epidermidis N2 - Das Gram-positive, Koagulase-negative Bakterium Staphylococcus epidermidis war viele Jahrzehnte als harmloser Kommensale der menschlichen Haut und der Schleimhäute bekannt. Jedoch hat sich S. epidermidis in den letzten zwanzig Jahren zu einem Haupterreger von Nosokomialinfektionen entwickelt. Dabei unterscheidet sich S. epidermidis im Vergleich zu anderen Erregern durch ein sehr begrenztes Spektrum an Pathogenitätsfaktoren, aber auch durch seine Fähigkeit, Biofilme auf künstlichen Oberflächen wie Kathetern und Implantaten formen zu können. Die vorliegende Arbeit beschäftigt sich mit zwei Hauptaspekten, die in der Pathogenität von S. epidermidis eine wichtige Rolle spielen: (i) dem Quorum-sensing System Agr (accessory gene regulator) und (ii) dem zeitlichen Prozess des Aufbaus, sowie der Regulation der Biofilmbildung von S. epidermidis. Das Quorum-sensing System Agr ist Teil eines komplexen regulatorischen Netzwerks. In der vorliegenden Arbeit wird durch Proteom- und Transkriptomanalysen gezeigt, dass das Agr-System in S._epidermidis den Hauptregulator für die Sekretion von extrazellulären Proteinen darstellt und darüber hinaus einen großen Einfluss auf die Regulation des Zentralmetabolismus und der Biosynthese von Aminosäuren hat. Mittels Mikroarray-Analyse konnte eine wichtige Verknüpfung des Agr-Systems mit dem pleiotrophen Repressor CodY identifiziert werden, der viele stationäre-Phase Gene im S._epidermidis Wildtyp reprimiert, jedoch nicht in der getesteten agr Mutante. Dieses führt zu einem stark veränderten Phänotyp der S. epidermidis agr Mutante, in Hinblick auf Wachstumskapazität, der Biofilmbildung, der Invasivität und dem Langzeitüberleben. Interessanterweise ergaben wissenschaftliche Studien, dass ca. 17 % der klinischen Isolate natürlich vorkommende agr Mutanten sind. Dieses könnte ein Hinweis darauf sein, dass S. epidermidis agr Mutanten aufgrund ihres stark veränderten Phänotyps und ihrer veränderten biochemischen Bedürfnisse und Kapazität in der Lage sind, andere ökologische Nischen im menschlichen Wirt zu besiedeln. Der zweite Teil dieser Arbeit hat die Biofilmbildung von S. epidermidis zum Thema. Durch die Etablierung eines standardisierten Modells der Biofilmbildung, war es möglich, über die Einführung einer Biofilm-Adhäsion-Ratio die Biofilmbildung als zeitlichen dynamischen Prozess darzustellen und verschiedenste Bedingungen und Stämme miteinander zu vergleichen. Dabei zeigte sich, dass die Biofilmbildung in S._epidermidis ein klar zeitlich strukturierter Prozess ist, der von Umweltfaktoren und der Nährstoffsituation abhängig ist, und dass verschiedene Stämme sehr unterschiedlich auf Veränderungen in ihrer Umwelt reagieren. Die zeitliche Analyse der Biofilmbildung mittels konfokaler Lasermikroskopie ergab, dass viele der Bakterien im Biofilm sterben. Dieses macht den Biofilm wesentlich anfälliger für Strömungsscherkräfte, die dann ganze Bakterienverbände ablösen und zu neuen Infektionsherden schwemmen könnten. Somit ermöglicht der Tod einer einzelnen Zelle unter Umständen ein besseres klonales Überleben. Die Mikroarray-Analysen der Genexpression im Biofilm zeigten, dass dieser einen physiologisch klar definierten Prozess durchläuft, der zu einer sehr stark verminderten metabolischen Aktivität und einer erhöhten Antibiotika-Resistenz führt. Darüber hinaus zeigen Bakterien im Biofilm einen weniger aggressiven Charakter, wie die Expression von Proteasen oder anderer Pathogenitätsfaktoren, welches S. epidermidis dabei hilft, dem Immunsystem des Wirts zu entgehen. Diese neuen Ergebnisse zur Regulation der Genexpression im Biofilm und zur Rolle des Quorum-sensing Systems Agr in S. epidermidis tragen wesentlich zum Verständnis der Pathogenität und der Physiologie dieses wichtigen nosokomialen Erregers bei. Sie bilden eine wichtige theroretische Grundlage für weiterführende Studien, mit dem Ziel in Zukunft neue Therapie- und Präventionsansätze gegen S. epidermidis-Infektionen zu entwickeln. N2 - The gram-positve, coagulase-negative bacterium Staphylococcus epidermidis was regarded as a harmless commensal of the human skin and mucosa. However, in the last two decades S. epidermidis has emerged as one of the major causes of nosocomial infections. In contrast to other infectious bacteria, S. epidermidis possesses only a limited number of pathogenicity factors, but forms a thick biofilm on artificial devices such as catheters and implants. This thesis deals with two main aspects of the pathogenicity of S. epidermidis: (i) the Quorum-sensing system Agr (accessory gene regulator) and (ii) the aspects of time dependency of biofilm formation and its regulatory mechanism. The Quorum-sensing system Agr is part of a complex network in Staphylococci. This work demonstrates that the Agr-System is the main regulator for the extracellular proteome. Moreover, it affects directly and indirectly the central metabolism and the biosynthesis of amino acids in S. epidermidis. By employing microarray and proteome analyses the pleiotrophic repressor CodY was identified as an important player which interacts with the Agr-system and influences staphylococcal metabolism. CodY is responsible for the repression of late stationary phase genes. Proteome and transcriptome analyses along the growth curve revealed that this effect occurs only in the S. epidermidis agr wild type, while the S. epidermidis agr mutant expresses late stationary phase genes right from the beginning of the exponential growth stage. This leads to a strongly altered phenotype of the S. epidermidis agr mutant concerning growth capacities, biofilm formation, invasion into host cells and long term survival. Interestingly, another study has shown recently that about 17 % of all clinical isolates are naturally occurring S. epidermidis agr mutants. This supports the hypothesis that S. epidermidis agr mutants are capable of clonizing alternative ecological niches by their strong altered biochemical and physiological properties. The main focus in the second part of this thesis aims at biofilm formation of S. epidermidis. In order to compare different conditions and strains for their biofilm capacity, a standardized protocol was established and a simple mathematical model was introduced. These investigations underlined that biofilm formation in S. epidermidis is a chronologically synchronized, but dynamic process which depends on environmental conditions and nutrition supply. In addition, different strains display variations in responsing to altered environmental conditions. Interestingly, S. epidermidis is not able to detach from a biofilm in form of single cells. s shown by confocal laser microscopy over a time course of 48 hours, bacteria rather die off in the inner zones of the biofilm. By this means, the structure gets instable and more susceptible to shearing forces resulting in detachment and drifting of bacterial clusters which are then transported to novel colonization sites. Therefore, death of a single cell might be an advantage for the clonal survival. This is in accordance with the data of gene expression analyses by microarrays. Moreover, these analyses show that biofilm formation in S. epidermidis is a strongly regulated process under very special physiological conditions. Obviously, biofilm formation leads to a diminished metabolic activity, a higher antibiotic resistant and to a diminished secretion of extracellular proteins and other immunogenic substances which supports the evasion of S. epidermidis from the host immune response. The results on regulation of biofilm formation and the function of the Agr system give interesting new insights into the pathogenicity and physiology of this important pathogen and its survival in the human host. The data provide an excellent theoretical basis for future experimental work aiming at the development of new therapeutic strategies against S. epidermidis infections. KW - Staphylococcus epidermidis KW - Biofilm KW - Genregulation KW - S. epidermidis KW - Biofilm KW - agr KW - proteom KW - transcriptom KW - S. epidermidis KW - biofilm KW - agr KW - proteom KW - transcriptom Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22278 ER - TY - THES A1 - Lößner, Isabel T1 - Die Rolle des bakteriellen Insertionselements IS256 bei der Modulation der Biofilmbildung in Staphylococcus epidermdis T1 - The role of the bacterial insertion sequence IS256 in the modulation of biofilmproduction in Staphylococcus epidermidis N2 - Staphylococcus epidermidis zählt zu den häufigsten Erregern nosokomialer Infektionen im Zusammenhang mit implantierten Fremdkörpern. Diese Bakterien zeigen eine außergewöhnliche phänotypische und genotypische Variabilität, von der auch die Expression wichtiger virulenz- und resistenzassoziierter Gene betroffen ist. Möglicherweise verfügen Staphylokokken damit über Anpassungsstrategien, die sie für das Überleben unter wechselnden Umweltbedingungen benötigen. In der vorliegenden Arbeit wurde die Rolle von bakteriellen Insertionssequenzen (IS) bei der Genomplastizität von Staphylococcus epidermidis untersucht. Im Mittelpunkt des Interesses stand dabei das Insertionselement IS256 und sein Einfluß auf die Biofilmbildung von Staphylococcus epidermidis. Die Fähigkeit von S. epidermidis, an Oberflächen zu haften und Biofilme zu bilden ist von der Präsenz und Expression des ica-Operons abhängig, das Enzyme für die Synthese eines Exopolysaccharids (PIA) kodiert. Die PIA-Produktion ist äußerst variabel und hat damit Einfluß auf das Virulenz- und Kolonisierungsverhalten dieser Bakterien. Im ersten Teil dieser Arbeit wurde gezeigt, daß die veränderliche PIA-Produktion bei S. epidermidis im wesentlichen auf drei Mechanismen zurückzuführen ist, an denen das IS-Element IS256 ursächlich beteiligt ist. Zunächst konnte durch den Vergleich der IS256-spezifischen Hybridisierungsmuster eines biofilmbildenden S. epidermidis-Wildtypstammes und dessen PIA-negativer Spontanvarianten gezeigt werden, daß die multiplen IS256-Kopien im Genom dieses Stammes außerordentlich aktiv sind. Die nähere Analyse der Varianten ergab bei einem Teil der PIA-negativen Abkömmlinge umfangreiche IS256-vermittelte genomische Umordnungen als Ursache für den Verlust der Biofilmbildung. Eine weitere Gruppe von Biofilm-negativen Varianten wies IS256-Insertionen im ica-Gencluster auf. Die Verteilung der Insertionsstellen im ica-Operon ließ darauf schließen, daß es sich bei dem icaC-Gen um einen Hot-spot für die Integration von IS256 handelt. Solche ica::IS256-Insertionen konnten bereits in zahlreichen S. epidermidis Stämmen nachgewiesen werden. Da diese Insertionen reversibel sind, bilden sie eine wesentliche Ursache für die Phasenvariation der Biofilmbildung von S. epidermidis. Bei einer dritten Gruppe von Varianten konnten Deletionen verschieden großer DNA-Abschnitte im S. epidermidis-Chromosom beobachtet werden, die zu einem Verlust der ica-Gene und damit der Fähigkeit, Biofilme auszubilden, führte. Um die Frage zu klären, welche Gene in der Umgebung des ica-Operons liegen und durch die Deletion von bis zu 250 kb-großen DNA-Fragmenten verloren gehen, wurde eine Cosmid-Genbank des S. epidermidis –Wildtypstammes erstellt. Die durch Nukleotidsequenzierung erhaltenen Informationen wurden mit der in der Genom-Datenbank zur Verfügung stehenden Sequenz des 1. A ZUSAMMENFASSUNG 2 Referenzstammes S. epidermidis RP62A verglichen und in einer Genkarte zusammengefaßt. Neben einzelnen Unterschieden zwischen den beiden S. epidermidis-Stämmen fiel vor allem auf, daß mehrere der von der Deletion betroffenen Leseraster für Proteine mit Ähnlichkeiten zu oberflächenassoziierten Proteinen kodieren, die an der Adhärenz der Bakterien beteiligt sein könnten. Daneben finden sich aber auch Leserahmen mit Ähnlichkeiten zu Transportsystemen und zahlreiche mobile genetische Elemente. Diese Ergebnisse lassen vermuten, daß das ica-Operon von S. epidermidis möglicherweise Teil einer Pathogenitätsinsel ist. Die Analyse der Deletionsrandbereiche einer Mutante ergab, daß der Verlust von mehr als 200 kb DNA durch homologe Rekombination zwischen zwei IS256-Elementen vermittelt wurde, die im Wildtypstamm in gleicher Orientierung zueinander vorlagen. Da IS256 offensichtlich eine wichtige Rolle bei der Genomplastizität von S. epidermidis spielt, konzentrierte sich der zweite Teil der Arbeit auf die Aufklärung des Transpositionsmechanismus dieses IS-Elements. Dabei konnte gezeigt werden, daß IS256 eine alternative Transpositionsreaktion nutzt, die durch die Bildung zirkulärer, extrachromosomaler DNA-Moleküle gekennzeichnet ist. Diese DNA-Zirkel bestehen aus einer vollständigen IS256-Kopie, bei der die beiden Enden des Elementes durch eine variable Anzahl von Nukleotiden fremder DNA als Brücke miteinander verbunden sind. Es konnte gezeigt werden, daß diese kurzen DNA-Abschnitte aus der Nachbarschaft der früheren IS256-Insertionsstelle stammen, wobei sowohl stromaufwärts als auch stromabwärts liegende Nukleotidsequenzen nachgewiesen wurden. Neben diesen vollständigen IS256-Zirkeln wurden aber auch Moleküle gefunden, bei denen entweder das rechte oder das linke Ende von IS256 fehlten. Die Daten legen nahe, daß beide IS256-Enden an der Zirkelbildung teilnehmen können und im Unterschied zu anderen zirkelbildenden Insertionssequenzen, die Strangtransferreaktion während der Zirkularisierung mit geringer Spezifität verläuft. Ringförmige IS256-Moleküle konnten sowohl in S. epidermidis als auch in rekombinanten S. aureus und E. coli-Stämmen nachgewiesen werden, was auf eine untergeordnete Rolle speziesspezifischer Faktoren bei diesem Prozeß schließen läßt. Dagegen konnte durch die Einführung einer Mutation in das putative Transposasegen des Elementes gezeigt werden, daß dieses Genprodukt für die IS256-Zirkularisierung essentiell ist. Es ist zu vermuten, daß die Bildung zirkulärer IS256-Moleküle die Voraussetzung für die präzise Exzision des Elementes während der Phasenvariation der Biofilmproduktion bildet. Außerdem ist die Generierung stabiler Mutationen durch das Zurücklassen von Teilen der duplizierten Zielsequenz oder durch die Vermittlung kleinerer Deletionen während der Zirkelbildung vorstellbar. Darüber hinaus bilden die multiplen Kopien des Elementes im Genom Kreuzungspunkte für homologe Rekombinationsereignisse. IS256 stellt damit sehr wahrscheinlich einen wesentlichen Faktor für die Flexibilität des Genoms von S. epidermidis dar. Die detaillierte Aufklärung der molekularen Mechanismen, die die Transposition von IS256 beeinflussen, könnten daher wertvolle Einblicke in die genetischen Anpassungsstrategien dieses bedeutenden nosokomialen Pathogens geben. N2 - Staphylococcus epidermidis is the predominant cause of implanted medical device related infections and of nosokomial sepsis. These bacteria show an unusual phenotypic and genotypic variability that comprises the expression of virulence- and resistance-associated genes. This adaptability is thought to be involved in the survival of staphylococci under changing environmental conditions. In this study the role of bacterial insertion sequences (IS) in the genome plasticity of S. epidermidis was investigated. Of particular interest was the insertion sequence element IS256 and its influence on S. epidermidis-biofilm formation. The capability of S. epidermidis to attach to surfaces and to form biofilms is due to the presence and expression of the ica Operon. This gene locus was shown to mediate cell-cell adhesion and production of the polysaccharid intercellular adhesin (PIA). The PIA-production is variable and has an influence on the virulence and staphylococcal colonization. In the first part of this work it was shown that variable PIA-production depends on three different mechanisms which involve the insertion sequence IS256. By comparison of different IS256-specific hybridization patterns of a biofilm forming wildtype S. epidermidis and its PIA-negative spontaneous variants, it could be shown that IS256 which is present in multiple copies in the genome of this strain is highly active. A more detailed analysis of this variants has shown that IS256 mediates genome rearrangements and causes the loss of biofilm formation in a number of PIA-negative variants. Another group of biofilm-negative variants carries an IS256 inserted in the ica-Operon. The distribution of the icaC::IS256 insertion sites led us assume that icaC is a hot spot for the integration of IS256. ica::IS256 insertions have been detected in numerous S. epidermidis strains. Because this insertions are reversible they are a substantial cause for phase variation of biofilm formation in S. epidermidis. A third group of variants shows the deletion of chromosomal DNA fragments of variable length which are accompanied with the loss of the ica genes and the ability to form biofilms. To answer the question which are the ica-neighbouring genes that get lost with the deletion of DNA-Fragments up to 250 kbp, we constructed an S. epidermidis wild type cosmid library. Nucleotide sequence information has been compared with the sequence of the reference strain S. epidermidis RP62A that is available in the genome database and was summarized in a gene map. Apart from some differences between this two S. epidermidis strains, it was remarkable that various open reading frames get lost, which show similarities to surface-associated proteins and which might be involved in adherence of bacteria. In addition, there are open reading frames showing similarities to transport proteins and numerous mobile DNA elements. These results indicate that the ica operon could be possibly a part of a pathogenicity island. Analysis of the deletion borders of a mutant has shown that homologous 1. B SUMMARY 4 recombination between two IS256 elements, oriented in the same direction, were responsible for the loss of more than 200 kbp DNA. Because IS256 plays an essential role in the genome plasticity in S. epidermidis it was of special interest to elucidate the transposition mechanism of IS256 which was the second part of this work. The data obtained in this analyses have shown that IS256 transposes via an alternative transposition mechanism that is characterized by the formation of extrachromosomal circular DNA molecules. These DNA circles consist of complete IS256 copies in which the left and the right end of the IS element are connected via foreign DNA (circle junctions). It could be shown that these circle junctions were derived from upstream and downstream flanking DNA-sequences of the parental genetic locus. In addition to complete circles, incomplete circles were detected in which either the left or the right end of IS256 was truncated. These results suggest that either end of IS256 can attack the opposite terminus and, in contrast to other circle-forming IS elements, the strand-transfer reaction occurs with low specifity. Circular IS256 molecules could be shown both in recombinant S. aureus and E. coli strains, which indicates that in the circularization process host factors play a minor role. Mutagenesis of the gene for the putative transposase revealed that this gene product is essential for formation of IS256 circles. There are grounds for the assumption that the formation of IS256-circles is the prerequisite for precise excision of the element during biofilm phase variation. Besides the generation of stable mutations through imprecise excision of the element is conceivable. In addition multiple copies of the element in the genome represent sites for homologous recombination. The combined data suggest that IS256 represents a driving force in the flexibility of the S. epidermidis genome. A detailed analysis of the molecular mechanisms which influence the transposition of IS256 could give an insight into the genetic adaptation of this important nosocomial pathogen. KW - Staphylococcus epidermis KW - Biofilm KW - Insertionselement KW - Staphylococcus epidermidis KW - Biofilm KW - IS256 KW - ica KW - Genomvariabilität KW - Staphylococcus epidermidis KW - biofilm KW - IS256 KW - ica KW - genomvariability Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3258 ER -