TY - THES A1 - Stock, Patrick Maria T1 - Binding site contribution in high resolution records of nicotinic receptor channel currents T1 - Beitrag der Bindungsstellen zum Öffnungsverhalten des nAChRs N2 - The nicotinic acetylcholine receptor of skeletal muscle is one of the best-investigated synaptic proteins and often serves as model for the entire family of pentameric ligand gated ion channels (pLGICs). Receptors of this superfamily share a common architecture. After binding the agonist the characteristic C-loop structure closes around the ligand-binding site and triggers a wave of conformational changes that spread through the protein and finally result in the opening of the channel gate. As shown before, high-resolution single channel data can hardly be described by simple kinetic mechanisms (Parzefall et al., 1998, Hallermann et al., 2005). Recent advances in the field of kinetic modelling on receptor currents demonstrate that the introduction of additional short lived shut states in kinetic schemes enhances the quality of estimates of reaction rates. The additional shut states that immediately follow ligand bound states in the mechanism are suggested to resemble the closing movement of the C-loop (Lape et al., 2008; Mukhtasimova et al., 2009). It has not been described yet whether and how the structural differences of the 2 binding sites of the receptor influence the opening behaviour. To address this question, high-resolution single channel recordings, in combination with agonists that are known to exhibit different binding site selectivity, were performed. Thereby, a detailed description of the binding site dependent generation of channel currents is possible. At the embryonic mouse-muscle receptor used in this study the ligand binding sites are located at the α-γ and α-δ subunit interfaces. By allocation of opening characteristics to the α-δ and α-γ sites it is possible to show the binding site dependent activation of distinct kinetic states. Furthermore, it will be shown that the recently introduced short-lived shut states are sufficient to describe high-resolution single channel data. Finally an enhanced kinetic mechanism based on the ‘primed states’ model, published in 2009 by Mukhtasimova et al., will be presented. In this model the structurally diverse α-δ and α-γ binding sites elicit different kinetic channel characteristics. Thus the complex high-resolution kinetic characteristics of the embryonic receptor can be described coherently. N2 - Der nicotinische Acetylcholin-Rezeptorkanal des Skelettmuskels zählt zu den bestuntersuchten synaptischen Proteinen und gilt als Modell für die Familie der Liganden gesteuerten pentameren Ionenkanäle. Rezeptoren dieser Großfamilie besitzen als charakteristisches strukturelles Merkmal ein Cystein-Schleifen-Motiv (C-loop), welches sich nach Bindung eines Agonisten um die Bindungstasche herum schließt und eine Kette weiterer Konformationsänderungen nach sich zieht. Wie in früheren Publikationen festgestellt wurde, ist es nur schwer möglich hochaufgelöste Messdaten mit konservativen kinetischen Modellen ausreichend zu beschreiben (Parzefall et al., 1998; Hallermann et al., 2005). Aktuelle Fortschritte auf dem Gebiet der kinetischen Modellierung von mechanistischen Rezeptormodellen auf Rezeptorströme, zeigen, dass die Einführung zusätzlicher kurzlebiger Geschlossenzustände in den kinetischen Mechanismen die Qualität der Voraussagen der Modelle verbessert. Diese zusätzlichen Geschlossenzustände, welche Zuständen mit gebundenen Agonisten des Rezeptormodells folgen, spiegeln höchstwahrscheinlich die Schließung des Cystein-Schleifen-Motivs wider (Lape et al., 2008; Mukhtasimova et al., 2009). Trotz der jüngsten Fortschritte wurde bisher nicht beschrieben, wie und ob die strukturellen Unterschiede der 2 vorhandenen Bindungsstellen sich auf die Charakteristika des Öffnungsverhaltens auswirken. Die Bindungsstellen für Agonisten befinden sich am embryonalen nicotinischen Acetylcholinrezeptor des Muskels der Maus an den Schnittstellen der α-δ und der α-γ Untereinheiten. Um der Frage des Einflusses der Bindungsstellendiversität auf den Grund zu gehen, wurden hochaufgelöste Einzelkanalmessungen unter der Verwendung von unterschiedlichen Agonisten, für die bekannt ist, dass sie unterschiedliche Selektivitäten zu den Bindungsstellen besitzen, durchgeführt. Hierdurch ist es möglich ein detailliertes Bild der bindungsstellenbedingten Auslösung definierter Öffnungscharakteristika zu beschreiben. Durch die Zuweisung der Öffnungscharakteristika zu den α-δ und α-γ Bindungsstellen gelingt es die bindungsstellenabhängige Aktivierung von einzelnen kinetischen Zuständen zu zeigen. Darüber hinaus werden direkte Anhaltspunkte dafür gezeigt, dass es möglich ist mit den angeführten kurzlebigen Geschlossenzuständen hochaufgelöste Einzelkanaldaten kinetisch hinreichend zu beschreiben. Schließlich wird ein erweiterter kinetischer Mechanismus vorgestellt, welcher auf dem ‚primed-states’ Modell, das 2009 von Mukhtasimova veröffentlicht wurde, basiert. Zusätzlich ist dieser in der Lage die komplexen kinetischen Charakteristika des embryonalen nicotinischen Rezeptorkanals, unter hoher zeitlicher Auflösung der Messdaten, zu beschreiben. KW - Nicotinischer Acetylcholinrezeptor KW - Bindestelle KW - Ionenkanal KW - Kinetik KW - Neurobiologie KW - nAChR KW - Kanalkinetik KW - Bindungsstellen KW - Rezeptor KW - neurobiology KW - nAChR KW - receptor channel KW - binding sites KW - kinetics Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71769 ER - TY - THES A1 - Erxleben, Franziska T1 - cDNA-Microarray-Analyse von ZNS-Kaliumkanal defizienten Mäusen T1 - cDNA-Microarry-Analysis of CNS-potassium channel deficient mice N2 - Ziel der Arbeit war die Erstellung eines „Kaliumkanal-Chips“, die Entwicklung einer geeigneten Messmethode und Auswertungsstrategie, die Durchführung von Testmessungen und die Untersuchung eines Knockout-Mausstammes auf den Genexpressionsstatus und die auftretenden Kompensationsmechanismen. Am Beginn der Arbeit stand vor allem die Auswahl der zu untersuchenden Kaliumkanal-Gene und die Sammlung von Sequenz-Informationen. Ausgehend davon konnte die cDNAMicroarray-Technologie als Methode der Wahl bestimmt werden und die entsprechenden Vorbereitungen für die Umsetzung getroffen werden. Die ersten Messungen im Zuge der Methodenentwicklungen zeigten vor allem, dass jeder Microarray seine individuellen Probleme mit sich bringt, ließen jedoch auch schon erahnen, welche umfangreichen Möglichkeiten diese Technologie bietet. Dann folgten Versuchsmessreihen, wie die Untersuchung der lterspezifischen Expression und der Vergleich von bestimmten Gehirnabschnitten mit dem Gesamtgehirn. Den Abschluss bildete die Messung der TRESK-Knockout-Mauslinie im Vergleich zu ihrem Wildtyp. Hier stand die Frage nach möglichen Kompensationsmechanismen im Vordergrund. Mit kcnk16 haben die Messungen einen interessanten Kandidaten aus der gleichen Genfamilie geliefert, dessen Funktion und Kompensationsvermögen nun in weiteren Tests zu untersuchen ist. Die Arbeit hat gezeigt, dass der Einsatz der Microarray-Technologie zur Untersuchung von Genexpressionsdaten bei Ionenkanalfamilien geeignet ist. Das Fundament der Microarrayanalyse von Kaliumkanälen mit einem individuell entwickelten Microarray ist zum einen das Wissen um Genetik und Funktion der Kaliumkanäle und zum anderen die Technologie, die eine solche Analyse möglich macht. Die Tatsache, dass Säugerorganismen wie Maus und Mensch eine solch hohe Zahl an Kaliumkanälen entwickelt haben und im ständigen Zellstoffwechsel in umfassender Form einsetzen, zeigt die Bedeutung dieser Ionenkanalfamilie und macht die Forschung an diesen Kanälen so interessant und wichtig für die medizinische Grundlagenforschung. Eine Vielzahl von Krankheiten kann schon jetzt direkt oder indirekt auf Gendefekte bei Kaliumkanal-Genen zurückgeführt werden. Mit der Microarray-Analyse steht nun eine Technologie zu Verfügung, die es ermöglicht, die Expression dieser Gene direkt zu untersuchen und mögliche Kompensationsvorgänge aufzudecken. Damit können Zusammenhänge ermittelt werden, die die Grundlage für weitere Forschungen sein können, mit deren Hilfe wir Krankheiten wie Depression eines Tages wirklich verstehen und behandeln können. N2 - The aims of this dissertation were the creation of a „potassium channel chip“, the development of adequate measurement method and strategy of analysis, the performance of developmental experiments and the analysis of the status of genexpression and the occurring mechanisms of compensation in a knockout mouse stem. In beginning the selection of the potassium channel genes to be considered as interesting part of the microarray and the compilation of the sequence information was the main part of the work. Starting from this the choice of the adequate cDNA-microarray-technology and the preparation of the implementation was possible. The first experiments performed in the course of the method development have given a hint on the problems connected with every microarray. However they also have shown the great possibilities of the microarray technology. In the ollowing series of measurements like the investigation of variation of expression during the juvenile development and the comparison of different parts of the brain with the whole brain were performed. The studies were completed by the investigation of the TRESK-Knockout mouse stem in comparison to its wild type. The centre of these studies was the question for possible mechanisms of compensation. As a result kcnk16 - being part of the same gene family as TRESK - can be named as an interesting candidate to be investigated for its function and capacity of compensation in the future. In my dissertation I was able to show that the microarray technology is an adequate method for the comparison of genexpression between members of ion channel families. The bases of the microarray analysis of potassium channels with a individually designed microarray are on the one side the knowledge of the genetics and function of the potassium channels and on the other side the technology which allows this kind of analysis. The fact that mammalian organism like mouse and human have developed such a great number of potassium channels and are using these in the regular cell metabolism in a comprehensive way shows the importance of this ion channel family and makes the research on these channels so interesting and important for fundamental research. A multiplicity of diseases can be attributed indirectly or directly to gene malfunctions in potassium channels. With microarray a technology is available, which permits to investigate the expression of these genes directly and to discover possible ways of compensation. By this coherences can be identified being the basis for continuative research which one day will make it possible to really understand and treat diseases like depression. KW - Maus KW - Knockout KW - Kaliumkanal KW - Zentralnervensystem KW - Microarray KW - DNS-Chip KW - Knock-out Maus KW - TRESK KW - Zentralnervensystem KW - Hirnzelle KW - Ionenkanal KW - Spannungskontrollierter Ionenkanal KW - Differentielle Genexpression KW - Potassium channel KW - Microarray KW - CNS KW - Genexpression KW - Knock out Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65640 ER - TY - THES A1 - Fuchs, Lorenz T1 - Interaktion von Kir2-Kanälen mit 7-Helix-Rezeptoren T1 - Regulation of Kir2 channels by seven-helix-receptors N2 - Einwärtsgleichrichtende Kaliumkanäle (Kir), aktuell in die 7 Unterfamilien Kir1-Kir7 eingeteilt, sind an der Regulation einer Vielzahl von Körperfunktionen, beispielsweise Herzfrequenz, Erregbarkeit von Nervenzellen, Tonus von Gefäßmuskelzellen, Hormonsekretion oder Aktivierung von Immunzellen, beteiligt. Für die Kontrolle dieser Funktionen ist es von entscheidender Bedeutung, dass die Leitfähigkeit dieser Kanäle beeinflusst werden kann. Die Kir3-Unterfamilie (früher GIRK für G-protein-activated-K+-channels) wird beispielsweise obligat durch die direkte Bindung der beta/gamma-Untereinheit des trimeren Gi/0-Proteins aktiviert (Karschin, 1999). Es gibt Hinweise in der Literatur, dass auch die stark einwärts gleichrichtenden Kanäle der Kir2-Familie durch G-Proteine der Gq-Familie reguliert sein können. Dabei widersprechen sich insbesondere zwei Untersuchungen zur Spezifität der Interaktion (Jones, 1996; Chuang et al., 1997). Ebenso ist der intrazelluläre Signalweg bislang nicht hinreichend geklärt. Um dies genauer zu untersuchen, wurden in dieser Arbeit die Kir-Kanäle Kir2.1-Kir2.4 jeweils mit 5 verschiedenen Gq-gekoppelten Rezeptoren in Xenopus-Oozyten koexprimiert und mit der Technik der „Zwei-Elektroden-Spannungsklemme“ der Strom über die Kir-Kanäle vor und nach Rezeptoraktivierung mit dem jeweils physiologischen Rezeptoragonisten gemessen. Es zeigte sich, dass ausschließlich Kir2.3 nach Aktivierung des M1-Acetylcholinrezeptors inhibiert wird. Eine Sequenzanalyse zeigte in der Extrazellulärregion von Kir2.3 eine zu den anderen Kir2-Kanälen abweichende Aminosäuresequenz, welche durch Mutation aber als potentielle Bindestelle zur Vermittlung des inhibitorischen Effektes ausgeschlossen werden konnte. Nachdem bereits gezeigt werden konnte, dass die Koexpression von Kir2.3 und M1-Acetylcholinrezeptor in bestimmten Gehirnregionen der Kontrolle neuronaler Erregbarkeit dient (Shen et al., 2007), ist es wahrscheinlich, dass derselbe Mechanismus auch in ventrikulären Kardiomyozyten existiert und dort als Schutzmechanismus vor vagaler Überstimulation fungiert. N2 - Inwardly rectifying K+ (Kir) channels, which can be classified into the subfamilies Kir1-Kir7, participate in the regulation of many functions of the human organism, e.g. heart rate, excitability of neurons or hormone release. In order to control these functions it is important that the conductance of these channels can be modulated. Channels of the Kir2 subfamily are regulated by Gi/o-coupled as well as Gq/11-coupled receptors. So far, it is still under debate whether these receptors selectively target to different members of the Kir2 subfamily. In order to investigate this issue rat Kir2.1-2.4 and Gq-coupled seven-helix receptors were coexpressed in Xenopus laevis oocytes and two electrode voltage-clamp measurements were performed recording the inwardly rectifying potassium currents before and after receptor activation. We showed that Kir2.3 is selectively inhibited by activation of the acetylcholine M1 receptor, whereas Kir2.1, 2.2 and 2.4 are not affected by activation of the M1 receptor. All other Gq-coupled receptors tested have no influence on Kir2 currents. Furthermore, mutation of a putative binding site within the extracellular loop between transmembrane region M1 and the pore region of rat Kir2.3 has no influence on M1 receptor induced inhibition. As it has been demonstrated that the cholinergic modulation of Kir2.3 channels selectively elevates dendritic excitability in certain brain areas (Shen et al., 2007), we postulate that the same mechanism also exists in cardiomyocytes in order to protect the heart function against an overwhelming parasympathetic stimulation. KW - Ionenkanal KW - Kaliumkanal KW - Muscarinrezeptor KW - Kir-Kanäle KW - G-Protein-gekoppelte Rezeptoren KW - inward rectifier KW - seven-helix receptor KW - acetylcholine M1 receptor Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39000 ER -