TY - THES A1 - Reuter, Isabel T1 - Development and function of monoaminergic systems in the brain of zebrafish T1 - Entwicklung und Funktion monoaminerger Systeme im Zebrafischgehirn N2 - This thesis explores the development of monoaminergic systems in the central nervous system (CNS) of zebrafish. The serotonergic cells of the hypothalamus pose the main focus of the present work. Most vertebrates except for mammals possess serotonin (5-HT) synthesising cells in more than one region of the CNS. In zebrafish such regions are, e.g. the hypothalamus, the raphe nuclei and the spinal cord. Serotonin functions as a neurotransmitter and neuromodulator in the CNS. Presumably due to its neuromodulatory tasks hypothalamic serotonergic cells are in contact with the cerebrospinal fluid (CSF), which expands the field of potential serotonergic targets tremendously. This highlights that serotonergic CSF-contacting (CSF-c) cells are vital for the execution of many functions and behaviours. Further, the hypothalamic serotonergic clusters constitute the largest population of serotonergic cells in the CNS of zebrafish. Together, these facts emphasise the need to understand the development and function of serotonergic CSF-c cells in the hypothalamus. Few studies have dealt with this subject, hence, information about the development of these cells is scarce. The zinc-finger transcription factor fezf2, and Fibroblast growth factor (Fgf)-signalling via the ETS-domain transcription factor etv5b are known to regulate serotonergic cell development in the hypothalamus (Bosco et al., 2013; Rink and Guo, 2004). However, the main Fgf ligand responsible for this mediation has not been determined prior to this work. The present thesis identifies Fgf3 as a crucial Fgf ligand. To achieve this result three independent strategies to impair Fgf3 activity have been applied to zebrafish embryos: the fgf3t24152 mutant, an fgf3 morpholino-based knock-down and the CRISPR/Cas9 technique. The investigations show that Fgf3 regulates the development of monoaminergic CSF-c cells in the hypothalamus. Additionally, Fgf3 impacts on cells expressing the peptide hormone arginine vasopressin (avp). Most interestingly, the requirement for Fgf3 by these cells follows a caudo-rostral gradient with a higher dependence on Fgf3 by caudal cells. This also seems to be the case for dopaminergic CSF-c cells in the hypothalamus (Koch et al., 2014). Moreover, etv5b a downstream target of Fgf-signalling is demonstrated to be under the control of Fgf3. With regard to serotonergic CSF-c cell development, it is shown that fgf3 is expressed several hours before tph1a and 5-HT (Bellipanni et al., 2002; Bosco et al., 2013). Together with the result that the hypothalamus is already smaller before mature serotonergic CSF-c cells appear, this argues for an early impact of Fgf3 on serotonergic specification. This hypothesis is supported by several findings in this study: the universal decrease of proliferating cells in the hypothalamus and simultaneous increase of cell death after fgf3 impairment. Complementary cell fate experiments confirm that proliferating serotonergic progenitors need Fgf3 to commit serotonergic specification. Further, these results corroborate findings of an earlier study stating that hypothalamic serotonergic progenitors require Fgf-signalling via etv5b to maintain the progenitor pool (Bosco et al., 2013). Additionally, the transcriptome of the hypothalamus has been analysed and 13 previously overlooked transcripts of Fgf ligands are expressed at developmental stages. The transcriptome analysis provides evidence for a self-compensatory mechanism of fgf3 since expression of fgf3 is upregulated as a consequence of its own impairment. Moreover, the Fgf-signalling pathway appears to be mildly affected by fgf3 manipulation. Together, Fgf-signalling and especially Fgf3 are established to be of critical importance during hypothalamic development with effects on serotonergic, dopaminergic CSF-c and avp expressing cells. Furthermore, this thesis provides two strategies to impair the tph1a gene. Both strategies will facilitate investigations regarding the function of hypothalamic serotonergic CSF-c cells. Finally, the presented findings in this study provide insights into the emergence of the posterior recess region of the hypothalamus, thereby, contributing to the understanding of the evolution of the vertebrate hypothalamus. N2 - Die vorliegende Dissertation untersucht die Entwicklung und Funktion monoaminerger Systeme im Zebrafischgehirn. Hierzu konzentriert sich die Studie hauptsächlich auf die serotonergen Zellen des Hypothalamus. Die meisten Vertebraten, außer Säugetiere, besitzen Serotonin (5-HT)-synthetisierende Zellen in mehr als einer Region im zentralen Nervensystem (ZNS). Solche Zellen lassen sich in Zebrafischen unter anderem im Hypothalamus, den Raphe Kernen und dem Rückenmark finden. Im ZNS agiert 5-HT als Neurotransmitter und als Neuromodulator. Es wird vermutet, dass, aufgrund der neuromodulatorischen Aufgaben des 5-HT, serotonerge Zellen mit ihren Vorsätzen mit der Cerebrospinalflüssigkeit (CSF) in Kontakt stehen, wodurch der Wirkungsbereich dieser Zellen enorm vergrößert wird. Dies betont den weitläufigen Einfluss serotonerger CSF-kontaktierender (CSF-k) Zellen auf vielfältige Funktionen und Verhalten. Zudem bilden serotonerge Zellen des Hypothalamus die größte serotonerge Zellpopulation im ZNS des Zebrafisches. Zusammengefasst heben diese Fakten die Notwenigkeit hervor, die Entwicklung und die Funktion serotonerger Zellen im Hypothalamus genauer zu verstehen. Nur wenige Studien haben sich dieser Thematik bisher angenommen, weshalb Erkenntnisse über diese Zellen rar sind. Bereits bekannt ist, dass der Zinkfinger-Transkriptionsfaktor fezf2 und der Fibroblasten-Wachstumsfaktor (Fgf)-Signaltransduktionsweg über den ETS-Domäne-Transkriptionsfaktor etv5b Einfluss auf die Entwicklung serotonerger CSF-k Zellen des Hypothalamus nehmen (Bosco et al., 2013; Rink and Guo, 2004). Allerdings ist der Fgf-Ligand, der die Entwicklung serotonerger CSF-k Zellen reguliert, noch nicht bekannt. Die vorliegende Arbeit identifiziert Fgf3 als einen Schlüsselliganden in diesem Zusammenhang. Hierfür wurden drei unabhängige Strategien zur Beeinträchtigung der Fgf3-Aktivität in Zebrafischembryos angewendet: die fgf3t24152 Mutante, ein Morpholino-basierter fgf3 Gen-Knockdown und die CRISPR/Cas9-Methodik. Die durchgeführten Untersuchungen zeigen, dass Fgf3 die Entwicklung monoaminerger CSF-k Zellen des Hypothalamus maßgeblich reguliert. Zusätzlich beeinflusst Fgf3 auch die Genexpression des Peptidhormons arginine vasopressin (avp) in dieser Region. Interessanterweise sind caudale avp exprimierende Zellen abhängiger von Fgf3 als rostrale. Dies scheint auch der Fall für dopaminerge Zellpopulationen des Hypothalamus zu sein (Koch et al., 2014). Des Weiteren wird demonstriert, dass Fgf3 über den Fgf-Signalweg die Expression von etv5b kontrolliert. Bezüglich der Entwicklung serotonerger CSF-k Zellen wird gezeigt, dass die fgf3 Expression bereits einige Stunden vor tph1a und 5-HT im caudalen Hypothalamus vorhanden ist (Bellipanni et al., 2002; Bosco et al., 2013). Zusammen mit dem Ergebnis, dass die nkx2.4b Expressionsdomäne, die zur Kenntlichmachung des Hypothalamus verwendet wurde, ebenfalls in früheren Entwicklungsstadien eine verringerte Größe aufweist, führt dies zu der Annahme, dass Fgf3 Auswirkungen auf die serotonerge Zellspezifikation hat. Diese Hypothese wird durch folgende Beobachtungen in dieser Arbeit unterstützt: Proliferierende Zellen des gesamten caudalen Hypothalamus sind mehrheitlich reduziert nachdem fgf3 beeinträchtigt wurde, gleichzeitig ist der Zelltod erhöht. Des Weiteren wird gezeigt, dass serotonerge Vorläuferzellen Fgf3 benötigen, um einer serotonergen Spezialisierung zu folgen. Die beschriebenen Beobachtungen untermauern die Ergebnisse einer früheren Studie, wonach der Fgf-Signalweg und etv5b wichtige Rollen für die Erhaltung der Proliferation von serotonergen Vorläuferzellen einnehmen (Bosco et al., 2013). Zusätzlich werden durch die durchgeführte Transkriptomanalyse 13 zuvor übersehene Fgf Liganden identifiziert, die im Hypothalamus exprimiert werden. Die Transkriptomanalyse zeigt zudem, dass die Beeinträchtigung von fgf3 zu einer Zunahme der fgf3 Transkript Anzahl führt, weshalb ein Selbstkompensationsmechanismus von fgf3 vorzuliegen scheint. Komponenten des Fgf-Signalweges unterliegen geringen Veränderungen nach der Manipulation von fgf3. Zusammenfassend wird in dieser Dissertation der Ligand Fgf3 als essentieller Faktor für die Entwicklung des Hypothalamus etabliert. Dies wird durch die Fgf3 Abhängigkeit von serotonergen, dopaminergen CSF-k und avp exprimierenden Zellen in dieser Region bestätigt. Des Weiteren werden in dieser Arbeit zwei Strategien für die Beeinträchtigung von tph1a präsentiert, die Untersuchungen bezüglich der Funktion serotonerger CSF-k Zellen des Hypothalamus ermöglichen. Abschließend erlauben die Ergebnisse neue Einblicke in die Entwicklung der Region um den posterioren Ventrikelrezess des Hypothalamus. Dies trägt dazu bei, das Verständnis über die Evolution des Hypothalamus von Vertebraten zu erweitern. KW - Hypothalamus KW - Zebrabärbling KW - fgf KW - Serotonin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204089 ER - TY - THES A1 - Gan, Qiang T1 - Investigation on Distinct Roles of Smad Proteins in Mediating Bone Morphogenetic Proteins Signals T1 - Untersuchung auf Unterschiedliche Rollen von Smad Proteinen in der Signalübertragung der Knochenmorphogenetischen Proteine N2 - Knochenmorphogenetische Proteine (engl. Bone morphogenetic Proteins, BMPs) sind eine Bestandteil von transforming growth factor-β (TGF-β)-Superfamilie und spielen wichtige Rollen in zahlreichen biologischen Ereignissen in der Entwicklung fast aller mehrzelligen Organismen. Fehlregulierte BMP-Signalweg ist die zugrunde liegenden Ursachen von zahlreichen erblichen und nicht erblichen Krankheiten wie Krebs. Die von BMP induziete breite Palette von biologischen Reaktionen konvergiert auf drei eng verwandten Smad Proteine. Sie vermitteln intrazelluläre Signale von BMP-Rezeptoren in den Zellkern. Die Spezifität des BMP-Signalwegs wurde intensiv auf der Ebene der Ligand-Rezeptor-Wechselwirkungen erforscht, aber, wie die verschiedenen Smad Proteine die durch BMPs hervorgerufen differenziellen Signale beitragen, bleibt unklar. In dieser Arbeit haben wir die BMP / Smad Signalweg in verschiedenen Aspektenuntersucht. Auf der Suche nach einem geeigneten Fluoreszenz-Reporter im Zebrafisch, verglichen wir verschiedene photo-schaltbaren Proteine und fand EosFP der beste Kandidat für diesen Modellorganismus im Bezug auf seine schnelle Reifung und Fluoreszenz-Intensität. Wir haben durch molekulare Modifizierung geeignete Vektoren erstellt, die Tol2-Transposon basieren trangenesis im Zebrafisch zu ermöglichen. Damit wurden schließlich transgenzebrafisch-Linien erzeugt. Wir kombinierten Fluoreszenz-Protein-Tagging mit hochauflösender Mikroskopie und untersuchten die Dynamik der Smad-Proteine in Modellsystem Zebrafisch. Es wurde beobachteten, dass Smad5 Kern-Translokation erfährt, als BMP Signalgeber bei Zebrafisch Gastrulation. Wir erkundeten die Beteiligung der Smad Proteine während der Myogenese-zu-Osteogenese Umwandlung von C2C12 Zelllinie, die durch BMP4 induziert wurde. Mit siRNA versuchten wir die endogene Smad Proteine niederzuschlagen, wobei die Auswirkungen auf diesen gekoppelten noch unterschiedlichen Verfahren durch quantitative real-time PCR und Terminal-Marker Färbung ausgewertet. Wir spekulieren, dass verschiedene Smad-Komplex Stöchiometrie für unterschiedliche durch BMPs hervorgerufe zelluläre Signale verantwortlich sein könnte. N2 - Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) superfamily and play important roles in numerous biological events in the development of almost all multi-cellular organisms. Dysregulated BMP signaling is the underlying causes of numerous heritable and non-heritable human diseases including cancer. The vast range of biological responses induced by BMPs converges on three closely related Smad proteins that convey intracellular signals from BMP receptors to the nucleus. The specificity of BMP signaling has been intensively investigated at the level of ligand-receptor interactions, but how the different Smad proteins contribute to differential signals elicited by BMPs remains unclear. In this work, we investigated the BMP/Smad signaling in different aspects. In search for an appropriate fluorescence reporter in zebrafish, we compared different photo-switchable proteins and found EosFP the best candidate this model system for its fast maturation and fluorescence intensity. We modified and created appropriate vectors enabling Tol2-transposon based trangenesis in zebrafish, with which transgenic zebrafish lines were generated. We combined fluorescence protein tagging with high resolution microscopy and investigate the dynamics of Smad proteins in model system zebrafish. We observed that Smad5 undergoes nucleo-translocation as BMP signal transmitter during zebrafish gastrulation. We explored the Smad involvement during myogenic-to-osteogenic conversion of C2C12 cell line induced by BMP4. We created transient loss-of-function of Smads by siRNA-mediated knockdowns and analyzed the effects on these coupled yet distinct procedures by quantitative real-time PCR and terminal marker staining. We found that different Smad-complex stoichiometry might be responsible for distinct cellular signals elicited by BMPs. KW - Knochen-Morphogenese-Proteine KW - Zebrabärbling KW - Signaltransduktion KW - Bone morphogenetic proteins KW - Smad KW - Signaling KW - Zebrafish KW - Cell line KW - Differentiation KW - Differenzierung KW - Zelllinie KW - Zebrafisch Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71127 ER -