TY - THES A1 - Horntrich, Claudia T1 - Die Funktion von Membranlipidnanodomänen für Signaltransduktionsprozesse in Pflanzen T1 - Analysis of signalling processes in Lipid Membrane domains N2 - In vielen tierischen Zellen und in Hefe wurden Membrandomänen als Plattformen für die Etablierung von Signalkomplexen bereits gut beschrieben (Foster et al., 2003) und entsprechend ihrer Resistenz gegenüber nicht-ionischen Detergenzien charakterisiert (Shogomori et al., 2003). Die Behandlung von Membranen mit solchen Detergenzien kann zu Artefakten führen und die Anwesenheit eines Proteins in diesen so genannten „DRMs“ bedeutet noch nicht, dass es auch in nativen Membrandomänen lokalisiert ist. Allerdings muss man sich, mangels besserer Methoden zur Aufreinigung von Membrandomänen, heute noch der Methode der DRM-Aufreinigung durch Detergenzien bedienen, um eine erste Vorstellung von der Proteinzusammensetzung dieser bestimmten Membranbereiche zu erhalten. Mittels Sterolreduktion der DRMs durch die Behandlung der isolierten Membranfraktionen mit MCD und anschließender HPLC-ESI-Massenspektrometrie, konnten 80 Proteine identifiziert werden, die somit als potentiell in Membrandomänen lokalisiert gelten können. Unter diesen befanden sich die beiden Arabidopsis-Remorine AtRem1.2 und AtRem1.3, die Ca2+-abhängige Proteinkinase CPK21 und die Proteinphosphatase 2C ABI1. Dieses Phosphatase-Kinase-Paar reguliert den membranständigen, im Mesophyll exprimierten, Anionenkanal SLAH3 in ABA-abhängiger Weise (Geiger et al., 2011). Mit Hilfe biochemischer, massenspektrometrischer und mikroskopischer Methoden konnte gezeigt werden, dass die Phosphatase ABI1 in Abwesenheit von ABA die Interaktion zwischen der Kinase CPK21 und dem Anionenkanal SLAH3 unterbindet. Dies geschieht indem SLAH3 und CPK21 aus den Membrandomänen in die umgebenden Membranbereiche verlagert werden und somit eine phosphorylierungsabhängige Aktivierung des Anionenkanals verhindert wird (Demir et al., 2013). Unter den in Nanodomänen lokalisiert Proteinen, konnte auch die NADPH-Oxidase AtrbohD als schwach sterolabhängig identifiziert werden. Diese zeigte im Gegensatz zu der homologen Oxidase AtrbohF, nach transienter Koexpression in Arabidopsis-Epidermiszellen zwar eine Lokalisation in distinkten Membrandomänen, aber keine Kolokalisation mit dem zuvor etablierten Membrandomänenmarker AtRem1.3 (Demir et al., 2013). Dieses Ergebnis impliziert, dass es verschiedene Arten von Membrandomänen geben könnte und dass die beiden Oxidasen (zumindest zeitweise) in unterschiedlichen Membrankompartimenten lokalisiert und dadurch womöglich auch unterschiedlich reguliert sein können. Nach Koexpression der Oxidase AtrbohD mit den weiteren 12 der insgesamt 16 Arabidopsis-Remorinen, konnte eine Kolokalisation der Oxidase mit AtRem1.4 bestätigt werden. Das Remorin AtRem1.4 zeigt in weiteren Versuchen nicht nur eine deutliche Lokalisierung in anderen sterolreichen Membrandomänen als AtRem1.3, es zeigt auch eine eindeutige laterale Immobilität und kann somit als ein Marker für Membrandomänen etabliert werden. Somit bestätigt sich die Annahme, dass es auch in Pflanzen unterschiedliche Arten von Membrankompartimenten gibt. Zu diesem Zeitpunkt war noch kein, die Funktion der Oxidase regulierender Interaktionspartner von AtrbohD bekannt, um die Frage des Zusammenhangs zwischen Lokalisation und Funktion der Oxidase beantworten zu können. Mit Hilfe verschiedener mikroskopischer Techniken (BiFC, SE-FRET, AB-FRET) zur Untersuchung von Protein-Protein-Interaktionen, konnte aus einer Auswahl von fünf Mesophyll-lokalisierten und Ca2+-unabhängigen Snrk2-Kinasen, zwei potentielle Interaktionspartner identifiziert werden. Genau wie mit der homologen Oxidase AtrbohF (Sirichandra et al., 2007), interagiert die ABA-abhängige Kinase OST1/Snrk2.6 auch mit AtrbohD. Bei dem zweiten potentiellen Interaktionspartner handelt es sich um Snrk2.7. Die Behandlung der transfizierten und in den Interaktionsmessungen eingesetzten Zellen mit der sterolreduzierenden Reagenz MCD resultierte in einem signifikanten Anstieg der zuvor gemessenen Interaktionseffizienzen (EFRET) aller fünf ausgewählten Snrk2-Kinasen mit AtrbohD. Eine Interaktion zwischen zwei Proteinen muss nicht zwingend bedeuten, dass sie eine funktionelle Einheit in einem Signalweg darstellen. Aus diesem Grund wurde der Einfluss der identifizierten potentiellen Interaktionspartner auf die ROS-Produktionsaktivität der NADPH-Oxidase AtrbohD untersucht. Es zeigt sich, dass Snrk2.7 die ROS-Produktion durch die Oxidase auf ein vergleichbar hohes Niveau steigern kann, wie die zu diesem Zeitpunkt als Interaktionspartner der Oxidase AtrbohD identifizierte Ca2+-abhängige Kinase CPK5 (Dubiella et al., 2013). Die Kinase Snrk2.7 interagiert also nicht nur mit AtrbohD, sondern kann die Oxidase auch phosphorylieren (wahrscheinlich an einer der beiden für die Phosphorylierung von AtrbohD als essentiell beschriebenen Positionen S343 oder S347 (Nühse et al., 2007) und nicht an der untersuchten Position S39) und somit aktivieren. Dem hingegen zeigt OST1, trotz einer zuvor bestätigten Interaktion mit AtrbohD, nicht die Fähigkeit diese Oxidase auch aktivieren zu können. Die Snrk2.7-vermittelte Aktivität von AtrbohD ist ebenfalls deutlich durch eine Behandlung der transfizierten Zellen mit MCD induzierbar. Die NADPH-Oxidase AtrbohD wird also in Abhängigkeit ihrer Lokalisierung in spezifischen Membrandomänen reguliert. Wenn die zwei essentiellen Phosphorylierungsstellen durch eine Punktmutation ausgeschaltet werden und die Oxidase nicht mehr als Antwort auf Pathogene aktiviert werden kann, lokalisiert diese nicht mehr in den AtRem1.4-markierten Membrandomänen. Auch zeigt sich, dass die Aktivität der Oxidase, induziert durch eine Interaktion mit der nicht in Membrandomänen lokalisierten Snrk2-Kinase Snrk2.7, gesteigert werden kann, wenn durch MCD die sterolreichen Membrandomänen abgereichert werden. Eventuell dienen Membrandomänen, zumindest im pflanzlichen System, nicht nur der Etablierung von Signalkomplexen, sondern in einigen Fällen auch der Negativregulierung von bestimmten Proteinaktivitäten, wie zum Beispiel in diesem Fall, der Produktion von reaktiven Sauerstoffspezies (ROS). N2 - In animal cells and yeast, membrane domains have been extensively characterized as signalling platforms (Foster et al., 2003) and characterized upon their resistance to treatment with non-ionic detergents (Shogomori et al., 2003). Such treatment of membranes can result in formation of artefacts and the appearance of a protein in these so-called “DRMs” is not necessarly related with its localization in native membrane domains. The lack of improved preparative methods, results in further use of DRM preparation to get a first insight into the protein composition of special membrane areas. The protein composition of isolated and MCD-treated detergent resistant membrane (DRM) fractions from purified plasma membrane of Arabidopsis thaliana was investigated by HPLC-ESI mass spectrometry. Eighty proteins could be identified which are thought to be localized in sterol rich membrane domains. Among these sterol-dependent proteins the two Remorins AtRem1.2 and AtRem1.3 and two essential ABA signalling components, namely the protein phosphatase 2C ABI1 and the kinase CPK21, could be identified. This phosphatase-kinase pair was very recently demonstrated to regulate the stomatal aperture via SLAH3-mediated anion release in an ABA-dependent manner (Geiger et al., 2011). Using biochemical, mass spectrometrical and microscopic approaches it could be shown that, in absence of ABA, the phosphatase ABI1 prevents the interaction between CPK21 and SLAH3 by dislocation of both proteins from membrane domains to surrounding membrane areas, which inhibits the phosphorylation and the activation of the channel (Demir et al., 2013). Among the potentially membrane domain localized proteins, the NADPH-oxidase AtrbohD could be identified to be weakly dependent upon a sterol rich environment. In contrast to the homologous AtrbohF, the isoform D shows no colocalization upon coexpression with the established membrane domain marker AtRem1.3 (Demir et al., 2013). This result implies that there must be co-residing membrane domains and that both oxidases are (at least temporarily) located in different membrane compartments. This could imply functionally different membrane platformes to regulate specific signalling cascades. After Coexpression of AtrbohD with 12 of the altogether 16 Remorin proteins, a colocalization with AtRem1.4 could be confirmed. In further experiments not only a clear localization in other membrane domains than the ones marked by AtRem1.3, but also a clear lateral immobility could be proofed for AtRem1.4, which therefore can be accepted as a marker for another kind of membrane domains. Regarding these results, the existence of diverse Types of membrane compartments, also in plants, can be accepted. At this time point of the investigations, no interaction partner of AtrbohD was known to regulate the function of the oxidase. Therefore, the relationship between localization and function of the oxidase was still an open question. Using different microscopic techniques (BiFC, SE-FRET, AB-FRET) to study protein-protein interactions, two potential interaction partners out of a set of five mesophyll expressed Ca2+-independent Snrk2-kinases, could be identified. The ABA-dependent kinase OST1/Snrk2.6, which also interacts with AtrbohF (Sirichandra et al., 2007), was demonstrated to be a potential interaction partner of AtrbohD as well as Snrk2.7. The treatment of transfected cells with MCD leads to a significant induction of the measured interaction efficiencies (EFRET) of all the five analysed Snrk2-kinases with AtrbohD. An interaction between two proteins does not automatically mean a functional regulation of a signalling pathway, therefore the influence of the identified potential interacting partners of AtrbohD on the ROS-producing activity was analysed. At this time point the Ca2+-dependent kinase CPK5 was identified to be an interacting and phosphorylating partner of AtrbohD. The kinase Snrk2.7 can induce the ROS-producing activity of AtrbohD to a similar level than CPK5, which means Snrk2.7 is not only interacting with AtrbohD, but also regulating its activity. The phosphorylation and activation of AtrbohD by Snrk2.7 is probably mediated by one of the two essential phosphorylation sites S343 and S347 (Nühse et al., 2007), but not on the analysed S39. In contrast, the kinase OST1 is indeed interacting with AtrbohD, but obviously not regulating its activity. The Snrk2.7-mediated ROS-producing activity of AtrbohD is also inducible upon treatment of the transfected cells with MCD. The NADPH-oxidase AtrbohD is regulated in dependency to its localization in specific membrane domains. Mutation oft the two essential phosphorylation sites leads to a dislocation from AtRem1.4-marked membrane domains. Treatment with MCD, that means disruption of the sterol rich membrane environment, resulted in significantly increased ROS-producing activity of AtrbohD upon interaction with the non-domain located kinase Snrk2.7. Probably the membrane domains do not only function as signalling platforms in plants, but in some cases also for negative regulation of certain protein activity, such as the production of reactive oxygen species (ROS). KW - Membrandomänen KW - AtrbohD KW - ROS KW - Ackerschmalwand KW - Plasmamembran KW - Signalpeptide Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107362 ER - TY - THES A1 - Nazeer, Ahmed T1 - Physiological and molecular basis of Azospirillum-Arabidopsis Interaction T1 - Physiological and molecular basis of Azospirillum-Arabidopsis Interaction N2 - The present study was aimed at revealing the early signalling events during the interaction of the diazotrophic soil bacterium Azospirillum brasilense with its host plant Arabidopsis thaliana. Furthermore, taking advantage of the micro array technique, a comprehensive overview of Arabidopsis genes has been undertaken which are affected upon association with A. brasilense The characterization of the early responses of Arabidopsis plants upon inoculation with Azospirillum brasilense strain Sp7 clearly indicated parallels with the initial events in plant pathogen interaction. For instance, not only bacterial preprations (lysates) form Azospirillum elicited an apoplastic alkalinization of the culture medium, but also the live bacteria, which were even more effective. Besides, in a luminol based assay, the bacterial lysates triggered production of the reactive oxygen species (ROS) in the Arabidopsis leaf discs. Interestingly, the elongation factor receptor mutants (efr) were completely insensitive to Azospirillum, suggesting elongation factor Tu (EF-TU) recognition as elicitor by Arabidopsis. This hypothesis was further validated with a bioinformatic approach. The N terminus initial 26 amino acids from Azospirillum EF-TU gene (elf26) showed more similarity to the elf26 sequences of bacteria like Agrobacterium tumefaciens which elicit responses in the plants through EF-TU rather than Pseudomonas syringae where the potent elicitor is flagellin 22. Universal transcriptome profiling of Arabidopsis thaliana seedlings upon inoculation with Azospirillum brasilense over a time course of six, twenty four and ninty six hours revealed very little genetic responses in the early time points. However, a bulk of genes was differentially regulated in 96 hours post inoculation (96hpi). The nature of these genes indicated that the bacterial treatment, among others, greatly affect the processes like cell wall modification, hormone metabolism, stress and secondary metabolism. Additionally expression levels of a numer of transcription factors (TFs) related to basic helix loop helix (BHLH) and MYB domain containing TF families were altered with Azospirillum inoculation. Particularly the BHLH TFs were among the most highly regulated genes. The array results from Azospirillum treated plants were further compared with the already available data emnating from treatment with flagellin 22 (flg22), oligogalacturonides (OGs) and Agrobacterium tumefaciens. Noteworthy, very different set of genes were affected upon inoculation with Azospirillum in relation to other treatments. Secondly a cluster of proteins involved in the biosynthesis of aliphatic glucosinolates (GSL) were uniquely induced upon Sp7 exposure. Genes operating in flavonoid biosynthesis also showed a distinct regulation trend in the comparative analysis. Taken together, the study in question provides insights into the early signalling events in the context of Azospirillum-Arabidopsis association and the bacterial signals recognized by the plants. The array data, at the same time, elucidates the genetic factors of Arabidopsis triggered upon association with Azospirillum brasilense. N2 - Die vorliegende Arbeit befasst sich mit den physiologischen und genetischen Reaktionen im Zuge der Interaktion von Arabidopsis thaliana mit dem freilebenden, Stickstoff-fixierenden Bodenbakterium Azospirillum brasilense. Qualitativ konnten gemeinsame Mechanismen der frühen physiologischen Antworten von Arabidopsis auf Lysate von mutualistischen (Azospirillum brasilense) oder pathogenen (Pseudomonas syringae und Agrobacterium tumefaciens) Mikroorganismen festgestellt werden. So reagierten Arabidopsis (Col-0 ) Pflanzen auf Lysate dieser Bakterien mit einem Anstieg der cytosolischen Calcium-Konzentration sowie des extrazellulären pH Werts, mit der Bildung reaktiver Sauerstoffspezies und einer Depolarisierung des Membranpotentials. Diese Antworten untschieden sich jedoch zum Teil erheblich in ihrer Amplitude. Weitere Untersuchungen konnten zeigen, dass Flagellenproteine von Azospirillum nicht durch Arabidopsis erkannt werden. Somit unterscheidet sich der Erkennungsmechanismus der Azospirillen von dem der Pseudomonaden, welche aufgrund ihrer Flagellenproteine durch den FLAGELLINSENSING-2 (FLS2) Rezeptor in Arabidopsis perzipiert werden. Die Arabidopsis Mutante ELONGATIONFACTOR RECEPTOR (efr) war insensitiv gegenüber Azospirillumlysaten. Dies legte nahe, dass die Erkennung von Azosprillum über eine Erkennung des bakteriellen Elongationsfaktors (EF-Tu) durch den EFR Rezeptor verläuft. Die anschließende Klonierung des Azospirillum EF-Tu Gens zeigte positionspezifische Unterschiede in der abgeleiteten Aminosäuresequenz gegenüber Referenzsequenzen aus Escherichia coli oder Agrobacterium tumefaciens und erklärt somit die „imperfekte“ Erkennung durch den EFR Rezeptor. Der zeitliche Verlauf der genetischen Antwort von Arabidopsis im Zuge der Interaktion mit Azospirillum wurde mit Hilfe „Micro-Array“ basierter Transkriptionansanalysen 6, 24 und 96 Stunden nach Inokulation (hpi) der Pflanzen untersucht. Dabei wurden nach 6 und 24 hpi lediglich 30 bzw. 60 differenziell regulierte Transkripte gefunden. Diese Beobachtung steht im Gegensatz zu Studien pathogener Elizitoren wie Flagellinen, in welchen bereits nach wenigen Stunden mehr als eintausend differenziell regulierte Transkripte in Arabidopsis gefunden wurden. Dieser Effekt konnte in den Interaktionsstudien mit Azospirillum erst nach 96 hpi beobachtet werden. Die Analyse der genetischen Antwort ergab, dass 96 hpi insbesondere Gene in ihrer Expression verändert waren, deren Produkte im Zusammenhang mit Zellwandmodifikationen, dem Hormonmetabolismus, der Stressanpassung sowie der sekundären Metabolismus stehen. Darüber hinaus konnten Gene aus der Familie der sog. „basic-helix-loop-helix“ und „MYB“ Transkriptionsfaktoren identifiziert werden, die einer spezifischen Regulation durch Azospirillum unterlagen. Die vergleichende Analyse der Araydaten mit Datensätzen, die im Zuge von Pathogen-Arabidopsis Interaktionen gewonnen wurden zeigte, dass insbesondere die Biosynthese von aliphatischen Glykosiden und Flavonolen eine typische Antwort der Pflanze auf die mutualistischen Azospirillum Bakterien darstellt. Die vorgestellte Arbeit liefert somit erste Erkenntnisse zur physiologischen und genetischen Antwort von Arabidopsis auf Azospirillum und ermöglicht die vergleichende Betrachtung dieser Antworten im Kontext der Interaktion von Pflanzen mit pathogenen Mikroorganismen. Die im Rahmen dieser Arbeit identifizierten, differenziell regulierten Gene bieten neue Ansatzpunkte zum vertieften Studium der Wechselwirkung von mutualistischen, wachstumsfördernden Bakterien mit höheren Pflanzen. KW - Azospirillum brasilense KW - Ackerschmalwand KW - Wechselwirkung KW - Molekularbiologie KW - Azospirillum brasilense KW - PAMPS KW - ROS KW - EF-TU KW - aliphatic glucosinolates KW - Azospirillum brasilense KW - PAMPS KW - ROS KW - EF-TU KW - aliphatic glucosinolates Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51673 ER - TY - THES A1 - Krischke, Markus T1 - Oxidativer Stress in Pflanzen : Untersuchungen zum D1-Phytoprostan-Signalweg T1 - Oxidative stress in plants: Investigating the D1-phytoprostane signalling pathway N2 - Phytoprostane (PP) können nichtenzymatisch in vitro und in vivo durch freie Radikal-katalysierte Peroxidation von alpha-Linolensäure entstehen. In der vorliegenden Arbeit konnte gezeigt werden, dass über den D1-Phytoprostan-Weg zwei weitere Klassen von Phytoprostanen gebildet werden können, die D1-Phytoprostane (PPD1) und die Deoxy-J1-Phytoprostane (dPPJ1). PPD1 und dPPJ1 wurden erstmals durch Partialsynthese hergestellt. Zudem konnten diese Verbindungen durch Autoxidation von alpha-Linolensäure gewonnen werden. PPD1 und dPPJ1 wurden chromatographisch aufgetrennt und UV-spektroskopisch und massenspektrometrisch charakterisiert. Zum Nachweis von PPD1 und dPPJ1 in planta wurde eine neuartige Analysenmethode mittels Fluoreszenz-HPLC entwickelt. Mit dieser Methode konnten PPD1 und dPPJ1 in drei unterschiedlichen Pflanzenspezies nachgewiesen werden. Zudem wurde eine verstärkte Biosynthese von dPPJ1 in planta durch oxidativen Stress beobachtet, z.B. durch eine Belastung mit Schwermetallen oder einen kurzfristigen Kälteschock. Darüber hinaus konnte gezeigt werden, dass dPPJ1 sowohl in Pflanzen als auch in Tieren biologisch aktiv sind. N2 - Phytoprostanes (PP) are formed in vitro and in vivo by free radical-catalyzed peroxidation of linolenic acid. In this work it has been shown that two additional classes of phytoprostanes are formed via the D1-phytoprostane pathway, D1-phytoprostanes (PPD1) and deoxy-J1-phytoprostanes (dPPJ1). For the first time PPD1 and dPPJ1 were prepared by partial synthesis. Additionally, these compounds were also obtained by autoxidation of linolenic acid in vitro. PPD1 and dPPJ1 were separated by chromatographical methods and characterized by UV spectroscopy and mass spectrometry. A novel method for the quantitation of PPD1 and dPPJ1 in planta has been developed, using fluorescence HPLC. This method allowed the identification of PPD1 and dPPJ1 in three different plant species. Furthermore, enhanced formation of dPPJ1 in planta was observed after oxidative stress, e.g. treatment with heavy metals or short exposure to low temperatures. Furthermore, it has been shown that dPPJ1 display biological activity in plants as well as in animals. KW - Phytoprostane KW - Prostaglandin-ähnliche Verbindungen in Pflanzen KW - Lipidperoxidation KW - Jasmonate KW - ROS KW - phytoprostanes KW - prostaglandin-like compounds in plants KW - lipid peroxidation KW - jasmonates KW - ROS Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8599 ER - TY - THES A1 - Stölzle, Sonja T1 - Licht- und Redoxregulation von Calcium-permeablen Kanälen in Arabidopsis thaliana Mesophyllzellen T1 - Light- and redoxregulation of calcium-permeable channels in Arabidopsis thaliana mesophyll cells N2 - 1. Mesophyllzellen von Arabidopsis thaliana sind mit Hyperpolarisations-ab-hängigen, Calcium-permeablen Kanälen ausgestattet. In Ca2+-haltigen Lösungen folgte die Nullstromspannung der Nernst-Spannung mit 27 mV bei einer zehnfachen Erhöhung der Ca2+-Konzentration. Die Sequenz an relativen Stromamplituden ergab Ba2+ (131,8 ± 20) > Ca2+ (100) > Mg2+ (84,3 ± 18). Der makroskopische Strom wurde auf der Basis einer 7,2 ± 1 pS-Leitfähigkeit bei einer Pipettenlösung mit 10 mM Ba2+ in der cell-attached Konfiguration gebildet. Die Kanäle waren sensitiv gegenüber Lanthan und Gadolinium, wobei die Stromamplitude bei 100 µM Lanthan um 97,2 ±7 % und bei 100 µM Gadolinium um 95,2 ± 7 % reduziert wurde. 2. Blaulicht induzierte den Hyperpolarisations-abhängigen, Calcium-permeablen Kanal in dunkeladaptierten, intakten Mesophyll-Protoplasten. Die Aktivierung war zeitabhängig und der Stromanstiegs erreichte eine Sättigung nach 11-16 Minuten. Weiterhin wurde bestimmt, dass eine Kanalaktivität erst bei einer Intensität an Blaulicht > 50 µmol/m2s1 induziert wird. Aufgrund der Tatsache, dass der photosynthetische Elektronentransport-Entkoppler DCMU die Aktivierung nicht verhinderte, konnte eine Beteiligung des Photosyntheseapparates ausgeschlossen werden. Eine Inhibierung der Aktivierung nach Inkubation mit dem Kinase-Inhibitor K252a war ein erster Hinweis für die Beteiligung von Phototropinen als relevante Blaulicht-Rezeptoren, da Phototropine eine Kinase-Funktion besitzen. Diese Hypothese bestätigte sich nach Überprüfung der Phototropin-knockout-Mutanten phot1-5 und phot1-5 phot2-1. Da die Aktivierung in phot1-5 reduziert war, und in phot1-5 phot2-1 keine Aktivierung der Kanäle durch Blaulicht mehr möglich war, konnte auf eine überlappende Funktion beider Photorezeptoren bezüglich der Aktivierung von Calcium-permeablen Kanälen geschlossen werden. Dagegen konnte eine Beteiligung weiterer Blaulicht-Rezeptoren, der Cryptochrome, ausgeschlossen werden. 3. Neben Blaulicht aktivierten auch reaktive Sauerstoff-Spezies (ROS) Hyper-polarisation-abhängige, Calcium-permeable Kanäle. Protoplasten mit intaktem Cytoplasma (cell-attached Konfiguration) zeigten nach Applikation von 5 mM H2O2 eine zeitabhängige Aktivierung der Lanthan-sensitiven Kanäle. Eine Sättigung des Stromanstiegs wurde nach ca. 25 Minuten erreicht. Neben dem Wildtyp (Col-0) wurde die Mutante dnd1 hinsichtlich Calcium-permeabler Kanäle überprüft. Sie besitzt einen nicht-funktionellen putativen cyclisch-Nukleotid-aktivierten Kanal, CNGC2, und zeigt Phänotypen bei der Pathogenabwehr. Eine histochemische DAB-Färbung ergab, dass dnd1 eine dem Wildtyp vergleichbare ROS-Produktion nach Inokulation mit avirulenten Pseudomonas syringae DC 3000 pv. tomato avrB besitzt. Da eine ROS- bzw. H2O2-Produktion, ein wichtiger initiierender Schritt bei Abwehrmechanismen, in der Mutante nicht beeinträchtigt war, wurde überprüft, ob ROS-aktivierte, Calcium-permeable Kanäle in dnd1 beobachtet werden konnten. Nach Applikation von 5 mM H2O2 zu intakten Protoplasten wurde keine dem Wildtyp vergleichbare Aktivierung Calcium-permeabler Kanäle festgestellt. Daraufhin konnte spekuliert werden, dass CNGC2 im Wildtyp den Calcium-permeablen Kanal repräsentiert. Eine Blaulicht-Aktivierung der Calcium-permeablen Kanäle in der Kanal-Mutante war jedoch möglich, was die Frage aufkommen ließ, ob es sich um verschiedene Kanäle mit denselben elektrophysiologischen Charakteristika handelt, oder ob es sich bei dem H2O2-aktivierten und dem Blaulicht-aktivierten Kanal um denselben Kanal handelt, der durch verschiedene Signalketten angeschaltet wird. Cyclische Nukleotide (cAMP) konnten die Kanäle in Wildtyp-Protoplasten nicht aktivieren, was dagegen sprach, dass es sich um CNGC2 handelte. Eine Inhibierung der H2O2-aktivierten Ströme durch den Calmodulin-Inhibitor W7 wies auf eine Beteiligung eines Calmodulin-abhängigen Schritts in der Signalkette hin. Untersuchungen des Calcium-permeablen Kanals in der outside-out Konfiguration mit einer dem Cytoplasma ähnlichen internen Lösung ergab, dass eine Kanalaktivität durch eine erhöhte Calcium-Konzentration (21 µM) bei Vorhandensein von Calmodulin induziert werden konnte. Cyclische Nukleotide aktivierten wie erwartet keine Hyperpolarisation-abhängigen, Calcium-permeablen Kanäle. Dies deutete darauf hin, dass CNGC2 die Calcium-permeablen Kanäle über einen Ca2+/Calmodulin-abhängigen Schritt in einer H2O2-induzierten Signalkette regulieren könnte. Lokalisationsstudien mit einem GFP-CNGC2-Fusionskonstrukt (CNGC2::mGFP4 /pPILY) zeigten, dass der Kanal in vivo im Endoplasmatischen Retikulum lokalisiert sein könnte. Dies bestätigte die Hypothese, dass CNGC2 nicht den Calcium-permeablen Kanal in der Plasmamembran repräsentiert und dass der Verlust der Kanalaktivität in dnd1 in einer beeinträchtigten Signalkette zu suchen ist. N2 - 1. Hyperpolarisation-dependent, calcium-permeable channels have been found in Arabidopsis thaliana mesophyll cells. In Ca2+-containing solutions, the reversal potential shifted 27 mV with a tenfold increase of the Ca2+-concentration. The relative sequence of permeability was Ba2+ (131,8 ± 20) > Ca2+ (100) > Mg2+ (84,3 ± 18). The macroscopic current in the cell-attached configuration was based on a 7,2 ± 1 pS-conductance with 10 mM Ba2+ in the pipette solution. The channels were sensitive to lanthanum and gadolinium. Current amplitudes decreased 97,2 ±7 % after application of 100 µM La3+ and 95,2 ± 7 % after application of 100 µM Gd3+. 2. Blue-light (450-490 nm) induced hyperpolarisation-dependent, calcium-permeable channels in dark-adapted mesophyll-protoplasts with intact cytoplasm. The current increase was time-dependent and saturated after 11-16 minutes. Examining the dose dependence of channel activation revealed that > 50 µmol/m2s1 blue-light induces channel activity. Phototsynthesis was shown to be not involved in the signaling cascade since the photosynthetic electron-transport inhibitor DCMU did not inhibit channel activation. The inhibition of channel activation with the kinase inhibitor K252a pointet to the involvement of phototropins. This hypothesis proved to be true when the phototropin knockout mutants phot1-5 and phot1-5 phot2-1 were examined. In phot1-5, the activation was clearly reduced and in phot1-5 phot2-1 no blue-light activation was observed anymore. Furthermore, this pointed to an overlapping function of both photoreceptors. The involvement of cryptochromes, further blue-light receptors, could be excepted. 3. Beside blue-light, also reactive oxygen species (ROS) were shown to activate calcium-permeable channels in intact mesophyll protoplasts. After application of 5 mM H2O2, lanthanum-sensitive channels showed a time-dependent current increase with a saturation after approx. 25 minutes. Beside wildtype-plants (Col-0), also the mutant dnd1 has been tested. dnd1 is characterized by a truncated protein of a putative cyclic-nucleotide-gated channel, CNGC2. The plants are dwarfed in stature, have an elevated level of salicylic acid and exhibit a resistance against a variety of virulent bacterial, fungal and viral phatogens without developing a hypersensitive response. After inoculation of leaves with Pseudomonas syringae DC 3000 pv. tomato avrB, dnd1 showed a production of ROS like the wildtype. In contrast, an activation of calcium-permeable channels by ROS was not observed. A blue-light-dependent activation of calcium-permeable channels was still possible. This raised the question if blue-light and H2O2 activate the same channel via different signaling cascades or if there are two calcium-permeable channels. Cyclic nucleotides alone did not activate the channels, pointing to the possibility that CNGC2 does not represent the calcium-permeable channel. Furthermore, when the intact cytoplasm was lost (outside-out configuration), H2O2-induced channel activity was also observed in dnd1, possibly due to the loss of a composition of regulating compounds in the cytoplasm. Therefore it was concluded that CNGC2 does not represent the observed calcium-permeable channel and that CNGC2 is placed upstream of the activation of these channels. An inhibition of the H2O2-induced channel activation by the calmodulin (CaM) inhibitor W7 pointet to the involvement of a CaM-dependent step in the signaling cascade. When the cytoplasm was replaced with a pipette solution containing an elevated level of Ca2+ (21 µM) and CaM, channel activity was induced. Ca2+, cyclic nucleotides or CaM alone did not have this effect. This pointed to the possibility, that CNGC2 might activate calcium-permeable channels via a Ca2+/CaM-dependent signaling pathway. Subcellular localisation studies with a GFP-fusionconstruct (CNGC2::mGFP4 /pPILY) revealed that CNGC2 might be located in the endoplasmatic reticulum. This reeinforced the hypothesis that CNGC2 does not represent the calcium-permeable channel in the plasma membrane and that the loss of channel activity in dnd1 is due to an impaired signaling cascade. Also the expression of GFP-labeled CNGC2 in a heterolguous system (HEK293 cells) showed that neither the full-length nor a mutant containing a partly deletion of the N-terminal end (CNGC2::EGFP/pcDNA3.1 or CNGC2-D112::EGFP/pcDNA3.1) is transported to the plasma membrane. Therefore no electrophysiological characterization of CNGC2 in this cell line was possible. KW - Ackerschmalwand KW - Mesophyll KW - Calciumkanal KW - Reaktive Sauerstoffspezies KW - Blaulicht KW - Patch-Clamp-Methode KW - Kanäle KW - Calcium KW - Patch-Clamp KW - Blaulicht KW - ROS KW - channels KW - calcium KW - patch-clamp KW - bluelight KW - ROS Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6975 ER - TY - THES A1 - Thoma, Ingeborg T1 - Cyclopentenon-Phytoprostane als Induktoren von pflanzlichen Abwehrreaktionen T1 - Cyclopentenone phytoprostanes as inducers of plant defense reactions N2 - Lipidperoxidation kann entweder durch Lipoxygenasen oder reaktive Sauerstoffspezies ausgelöst werden. Enzymatische Oxidation von alpha-Linolensäure kann zur Biosynthese von zyklischen Oxylipinen vom Typ der Jasmonate führen, wohingegen durch freie Radikal-katalysierte Oxidation von alpha-Linolensäure mehrerere Klassen zyklischer Oxylipine, den Phytoprostanen entstehen können. Eine dieser Phytoprostanklassen, Phytoprostane E1 (PPE1), kommen ubiquitär in Pflanzen vor. In der vorliegenden Arbeit wird gezeigt, dass PPE1 in planta in neuartige Cyclopentenon-Phytoprostane, die PPA1 und PPB1 umgewandelt werden. Eine gesteigerte Bildung von PPE1, PPA1 und PPB1 wurde sowohl nach Peroxid-Behandlung von Tabak-Zellkulturen als auch nach Behandlung von Tomatenpflanzen mit dem nekrotrophen Pilz Botrytis cinerea beobachtet. Darüberhinaus besitzen PPA1 und PPB1 biologische Wirkung. Sie stimulierten beispielsweise die Bildung von Phytoalexinen in mehreren Zellkulturen. Diese Daten implizieren, dass die Bildung von Phytoprostanen eine Folge von oxidativem Stress in Pflanzen ist und dass Phytoprostane pflanzliche Abwehrmechanismen induzieren können. N2 - Lipid peroxidation may be initiated by lipoxygenases or by reactive oxygen species. Enzymatic axidation of alpha-linolenic acid can result in the biosynthesis of cyclic oxylipins of the jasmoate type while free-radical-catalyzed oxidation of alpha-linolenate may yield several classes of cyclic oxylipins termed phytoprostanes in vivo. One of these classes, the E1-phytoprostanes (PPE1) occur ubiquitously in plants. In this work it is shown that PPE1 are converted to novel cyclopentenone A1- and B1-phytoprostanes in planta. Enhanced formation of PPE1, PPA1 and PPB1 is observed after peroxide stress in tobacco cell cultures as well as after infection of tomato plants with a necrotrophic fungus botrytis cinerea. Furthermore PPA and PPB1 display powerfull biological activity, i.e. they stimulate biosynthesis of phytoalexins in several cell cultures. Data collected so far infer that enhanced phytoprostane formation is a general consequence of oxidative stress in plants. Futhermore phytoprostanes are potent inducers of plant defens mechanisms. KW - Pflanzen KW - Oxidativer Stress KW - Abwehrreaktion KW - Phytoprostane KW - Abwehr KW - Fettsäuren KW - Jasmonsäure KW - ROS KW - phytoprostanes KW - plant defense KW - fatty acid KW - jasmonic acid KW - ROS Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6857 ER -