TY - JOUR A1 - Gross, E. A1 - Ruzicka, T. A1 - Restorff, B. von A1 - Stolz, W. A1 - Klotz, Karl-Norbert T1 - High-affinity binding and lack of growth-promoting activity of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) in a human epidermal cell line N2 - No abstract available KW - Toxikologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60358 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Keil, R. A1 - Zimmer, F. J. A1 - Schwabe, U. T1 - Guanine nucleotide effects on 8-cyclopentyl-1,3-[\(^3\)H]dipropylxanthine binding to membrane-bound and solubilized A\(_1\) adenosine receptors of rat brain N2 - The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[\(^3\)H]dipropylxanthine [\(^3\)H]DPCPX), a highly selective A\(_1\) adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A\(_1\) receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [\(^3\)H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [\(^3\)H]DPCPX bindingwas the same as for guanine nuc1eotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., G\(_i\), in the regulation of antagonist binding is suggested. This was confirmed by inactivation ofGi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [\(^3\)H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A\(-1\) receptors for [\(^3\)H]DPCPX but by an increased Bmu value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when rnost receptors are in a high-affinity state for agonists, only a few receptors are labeled by [\(^3\)H]DPCPX. It is suggested that [\(^3\)H]DPCPX binding is inhibited when receptors are coupled to G\(_i\). Therefore, uncoupling of A\(_1\) receptors from G\(_i\) by guanine nucleotides or by inactivation of G\(_i\) with NEM results in an increased antagonist binding. Key Words: Adenosine receptors-8 -Cyclopentyl-1,3-eH]dipropylxanthine-Antagenist binding-Guanine nucleotide effects. Klotz K.-N. et al. Guanine nucleotide etfects on 8-cyclopentyl-1 ,3-eH]dipropylxanthine binding to membrane-bound and solubilized A1 adenosine receptors of rat brain. J. Neurochem. 54, 1988-1994 (1990). KW - Toxikologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60369 ER - TY - JOUR A1 - Gimpl, G. A1 - Gerstberger, R. A1 - Mauss, U. A1 - Klotz, Karl-Norbert A1 - Lang, R. E. T1 - Solubilization and characterization of active neuropeptide-Y receptors from rabbit kidney N2 - Active neuropeptide Y receptors were solubilized from rabbit kidney membranes using the zwitterionic detergent 3-[ (3-cholamidopropy l)dimethylammonio ]- 1-propanesulfonic acid (CHAPS). In membrane fragmentsandsoluble extracts neuropeptide Y bindingwas time dependent, saturable, reversible, and of high affinity. Scatchard analysis of equilibrium binding data indicated a single class of binding sites with respective Kn and Bmax values of 0.09 nM and 530 fmol/mg of protein for the membrane-bound receptors and 0.10 nM and 1585 fmol/mg of protein for the soluble receptors. Neuropeptide Y bindingwas specifically inhibited by the nonhydrolyzable GTP analog guanosine 5' -0- (3-thiotripbosphate) in a concentration-dependent manner, with IC\(_{50}\) values of 28 and 0.14 \(\mu\)M for membrane- bound and soluble receptors, respectively, suggesting that neuropeptide Y receptors are functionally coupled to GTP-binding regulatory proteins. CrossHoking studies were performed with the heterobifunctional N-hydroxysuccinimidyl-4-azidobenzoate and the monofunctional neuropeptide Y derivative, azidobenzoyl and led to the identification of a 100 kDa peptide that should represent the covalently labeled neuropeptide Y receptor. KW - Toxikologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60375 ER - TY - JOUR A1 - Wilken, Anke A1 - Klotz, Karl-Norbert A1 - Tawfik-Schlieper, Hoda A1 - Schwabe, Ulrich T1 - Pharmacological characterization of the adenylate cyclase-coupled adenosine receptor in isolated guinea pig atrial myocytes N2 - No abstract available. KW - Pharmakologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86061 ER - TY - CHAP A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Maurer, K. A1 - Ott, I. A1 - Schwabe, Ulrich T1 - Effects of adenosine on mast cells N2 - No abstract available KW - Adenosin KW - Mastzelle Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86101 ER - TY - CHAP A1 - Spielmann, W.-S. A1 - Arend, L. J. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Adenosine receptors and singnaling in the kidney N2 - No abstract available. KW - Adenosinrezeptor KW - Niere Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86114 ER -