TY - BOOK A1 - Halder, Partho T1 - Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library T1 - Identifikation und Charakterisierung von synaptischen Proteinen von Drosophila melanogaster mit Hilfe von monoklonalen Antikörpern der Würzburger Hybridoma-Bibliothek N2 - For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave 99 promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures. N2 - Für einen Großteil der Proteine, die im menschlichen Gehirn exprimiert werden, ist lediglich die Primärstruktur aus dem Genomprojekt bekannt. Proteine, die in der Evolution konserviert wurden, können in genetischen Modellsystemen wie Drosophila untersucht werden. In dieser Doktorarbeit werden monoklonale Antikörper (mAk) aus der Würzburger Hybridoma Bibliothek produziert und charakterisiert, mit dem Ziel, die erkannten Proteine zu identifizieren. Der mAk ab52 wurde als IgM typisiert, das auf Western Blots ein zytosolisches Protein von Mr ~110 kDa erkennt. Das Antigen wurde durch zwei-dimensionale Gelelektrophorese (2DE) als einzelner Fleck aufgelöst. Massenspektrometrische Analyse dieses Flecks identifizierte dass EPS-15 (epidermal growth factor receptor pathway substrate clone 15) als viel versprechenden Kandidaten. Da für einen anderen mAk aus der Bibliothek, aa2, bereits bekannt war, dass er EPS-15 erkennt, wurden die Western-Blot-Signale der beiden Antikörper nach 1D und 2D Trennungen von Kopfhomogenat verglichen. Die Ähnlichkeit der beiden Muster deuteten darauf hin, dass beide Antigene dasselbe Protein erkennen. Das Fehlen des Wildtyp-Signals in homozygoten Eps15 Mutanten in einem Western Blot mit mAk ab52 bestätigten schließlich, dass EPS-15 das Antigen zu mAk ab52 darstellt. Demnach erkennen beide mAk, aa2 und ab52, das Drosophila Homolog zu EPS- 15. Da mAk aa2 ein IgG ist, dürfte er für Anwendungen wie Immunpräzipitation (IP) besser geeignet sein. Er wurde daher bereits bei der Developmental Studies Hybridoma Bank (DSHB) eingereicht, um ihn der ganzen Forschergemeinde leicht zugänglich zu machen. Der mAk na21 wurde ebenfalls als IgM typisiert. Er erkennt ein Membran assoziiertes Antigen von Mr ~10 kDa auf Western Blots. Aufgrund der Membranassoziierung des Proteins war es nicht möglich, es in 2DE aufzulösen und 101 da es sich um ein IgM handelt, war eine Anreicherung des Antigens mittels IP nicht erfolgreich. Vorversuche zur biochemischen Reinigung des endogenen Proteins aus Gewebe waren Erfolg versprechend, konnten aber aus Zeitmangel nicht abgeschlossen werden. Daher erscheint eine biochemische Reinigung des Proteins für eine Identifikation durch Massenspektrometrie möglich. Eine Reihe weiterer mAk wurden hinsichtlich ihrer Färbemuster auf Gefrierschnitten und in Ganzpräparaten von Drosophila Gehirnen untersucht. Allerdings färbten viele dieser mAk sehr wenige Strukturen im Gehirn, so dass nur eine sehr begrenzte Menge an Protein als Startmaterial verfügbar wäre. Da diese Antikörper keine Signale auf Western Blots produzierten und daher eine Anreicherung des Antigens durch elektrophoretische Methoden ausschlossen, wurde keine Reinigung versucht. Andererseits macht die spezifische Lokalisation dieser Proteine sie hoch interessant für eine weitere Charakterisierung, da sie eine besonders spezialisierte Rolle in der Entwicklung oder für die Funktion von neuralen Schaltkreisen, in denen sie vorkommen, spielen könnten. Die Reinigung und Identifikation solcher Proteine mit niedrigem Expressionsniveau würde neue Methoden der Anreicherung der gefärbten Strukturen erfordern. KW - synaptic proteins KW - Taufliege KW - Synapse KW - Proteine KW - Monoklonaler Antikörper KW - synaptische Proteine KW - monoklonale Antikörper KW - Drosophila melanogaster KW - monoclonal antibodies Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270205 N1 - ursprüngliche Originalausgabe der Dissertation erschienen am 19.01.2012 unter: https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-67325 ER - TY - THES A1 - Horn [née Bunz], Melanie T1 - The impact of Drosophila melanogaster`s endogenous clock on fitness: Influence of day length, humidity and food composition T1 - Auswirkungen von Drosophila melanogaster`s Innerer Uhr auf die Fitness: Einfluss von Tageslänge, Luftfeuchtigkeit und Ernährung N2 - We are living in a system that underlies permanent environmental changes due to the rotation of our planet. These changes are rhythmic with the most prominent one having a period of about 24 hours, but also shorter and longer rhythms characterize our environment. To cope with the ever-changing environmental conditions, it is thought to be beneficial if an organism can track and anticipate these changes. The so called endogenous clocks enable this and might provide a fitness advantage. To investigate and unravel the mechanism of endogenous clocks Chronobiologists have used different model organisms. In this thesis Drosophila melanogaster was used as model organism with its about 150 clock neurons representing the main endogenous clock of the fly in the central brain. The molecular mechanisms and the interlocked feedback loops with the main circadian key players like period, timeless, clock or cycle are under investigation since the 1970s and are characterized quite well so far. But the impact of a functional endogenous clock in combination with diverse factors and the resulting fitness advantages were analysed in only a few studies and remains for the most part unknown. Therefore the aim of this thesis was to unravel the impact of Drosophila melanogaster`s endogenous clock on the fitness of the fly. To achieve this goal different factors – like day length, humidity and food composition – were analyzed in wild type CS and three different period mutants, namely perL, perS and per01, that carry a point mutation altering or abolishing the free-running period of the fruit fly as well as a second arrhythmic strain, clkAR. In competition assay experiments wild type and clock mutant flies competed for up to 63 generations under a normal 24 hour rhythm with 12 hours light/day and 12 hours darkness/night (LD12:12) or T-cycles with 19 or 29 hours, according to the mutants free-running period, or constant light (LL) in case of the arrhythmic mutant as well as under natural-like outdoor conditions in two consecutive years. Overall the wild type CS strain was outcompeting the clock mutant strains independent of the environmental conditions. As the perL fly strain elongated their free-running period, the competition experiments were repeated with naturally cantonized new fly strains. With these experiments it could be shown that the genetic background of the fly strains – which are kept for decades in the lab, with backcrosses every few years – is very important and influences the fitness of flies. But also the day length impacts the fitness of the flies, enabling them to persist in higher percentage in a population under competition. Further factors that might influence the survival in a competing population were investigated, like e.g. mating preferences and locomotor activity of homo- and heterozygous females or sperm number of males transferred per mating. But these factors can still not explain the results in total and play no or only minor roles and show the complexity of the whole system with still unknown characteristics. Furthermore populations of flies were recorded to see if the flies exhibit a common locomotor activity pattern or not and indeed a population activity pattern could be recorded for the first time and social contact as a Zeitgeber could be verified for Drosophila melanogaster. In addition humidity and its impact on the flies´ fitness as well as a potential Zeitgeber was examined in this thesis. The flies experienced different relative humidities for eclosion and wing expansion and humidity cycle phase shifting experiments were performed to address these two different questions of fitness impact and potential Zeitgeber. The fruit fly usually ecloses in the morning hours when the relative humidity is quite high and the general assumption was that they do so to prevent desiccation. The results of this thesis were quite clear and demonstrate that the relative humidity has no great effect on the fitness of the flies according to successful eclosion or wing expansion and that temperature might be the more important factor. In the humidity cycle phase shifting experiments it could be revealed that relative humidity cannot act as a Zeitgeber for Drosophila melanogaster, but it influences and therefore masks the activity of flies by allowing or surpressing activity at specific relative humidity values. As final experiments the lifespan of wild type and clock mutant flies was investigated under different day length and with different food qualities to unravel the impact of these factors on the fitness and therefore survival of the flies on the long run. As expected the flies with nutrient-poor minimum medium died earlier than on the nutrient-rich maximum medium, but a small effect of day length could also be seen with flies living slightly longer when they experience environmental day length conditions resembling their free-running period. The experiments also showed a fitness advantage of the wild type fly strain against the clock mutant strains for long term, but not short term (about the first 2-3 weeks). As a conclusion it can be said that genetic variation is important to be able to adapt to changing environmental conditions and to optimize fitness and therefore survival. Having a functional endogenous clock with a free-running period of about 24 hours provides fitness advantages for the fruit fly, at least under competition. The whole system is very complex and many factors – known and unknown ones – play a role in this system by interacting on different levels, e.g. physiology, metabolism and/or behavior. N2 - Wir leben in einem System, welches durch die Erdrotation permanenten Veränderungen der Umwelt unterliegt. Diese Veränderungen sind rhythmischer Natur, wobei die wichtigste Veränderung einen Rhythmus von circa 24 Stunden aufweist. Aber auch kürzere und längere Rhythmen charakterisieren unsere Umwelt. Um mit den permanenten Veränderungen klar zu kommen geht man davon aus, dass es von Vorteil ist wenn ein Organismus die Veränderungen wahrnehmen und vorausahnen kann. Die sogenannten Inneren Uhren ermöglichen dies und stellen möglicherweise einen Fitness Vorteil dar. Um den Mechanismus von Inneren Uhren zu untersuchen und aufzudecken benutzen Chronobiologen verschiedene Modellorganismen. In dieser Arbeit wurde Drosophila melanogaster, mit ihren etwa 150 Uhrneuronen welche die Innere Uhr im Zentralen Nervensystem darstellen, als Modellorganismus verwendet. Der molekulare Mechanismus und die ineinandergreifenden Rückkopplungsschleifen mit den Hauptakteuren period, timeless, clock und cycle werden seit den 1970ern erforscht und wurden bisher recht gut charakterisiert. Aber der Einfluss einer funktionellen Inneren Uhr in Kombination mit diversen Faktoren und die daraus resultierenden Fitness Vorteile wurden in nur wenigen Studien untersucht und bleiben zu großen Teilen unbekannt. Deshalb war es das Ziel dieser Arbeit den Einfluss von Drosophilas Innere Uhr auf die Fitness der Taufliege aufzudecken. Um dieses Ziel zu erreichen wurden verschiedene Faktoren – wie z.B. Tageslänge, Luftfeuchtigkeit und Futterqualität – in Wildtyp CS und drei verschiedenen period Mutanten – namentlich perL, perS und per01, welche alle eine Punktmutation tragen, welche die Freilauf-Periodenlänge verändert oder zu Arrhythmizität führt – sowie einem weiteren arrhythmischen Fliegenstamm, clkAR, untersucht. In Konkurrenzversuchen konkurrierten Wildtyp und Uhrmutanten über bis zu 63 Generationen unter normalen 24 Stunden Rhythmen mit jeweils 12 Stunden Licht/Tag und 12 Stunden Dunkelheit/Nacht oder unter T-Zyklen mit 19 oder 29 Stunden, entsprechend der Freilauf-Periodenlänge der Mutanten, oder Dauerlicht (LL) im Falle der arrhythmischen Mutante, sowie unter naturähnlichen Bedingungen im Feldversuch in zwei aufeinanderfolgenden Jahren. Im Gesamten war der Wildtyp den Uhrmutanten überlegen, unabhängig von den Umweltbedingungen. Da die perL Mutanten Ihre Freilauf-Periodenlänge deutlich verlängerten, wurden die Konkurrenzexperimente mit auf natürlicher Weise mit dem Wildtyp CS rückgekreuzten Fliegenstämmen wiederholt. Mit diesen Experimenten konnte gezeigt werden, dass der genetische Hintergrund der Fliegenstämme – welche teils für Jahrzehnte im Labor gehalten und nur wenige Male rückgekreuzt werden – sehr wichtig ist und die Fitness der Fliegen beeinflusst. Aber auch die Länge der Tage (19 h, 24 h oder 29 h) beeinflusst die Fitness der Fliegen und ermöglicht es Ihnen in höherem Anteil in einer Population unter Konkurrenz zu bestehen. Weitere Faktoren, welche das Überleben unter Konkurrenz möglicherweise beeinflussen können, wie z.B. eine Paarungspräferenz und Laufaktivität von homo- und heterozygoten Weibchen oder die Anzahl an Spermien, die pro Paarung übertragen werden, wurden untersucht. Diese Faktoren allein konnten jedoch die Ergebnisse der Konkurrenzversuche nicht erklären und spielen dabei keine oder nur geringfügige Rollen und stellen ein Beispiel für die Komplexität des ganzen Systems mit noch weiteren unbekannten Faktoren dar. Im Weiteren wurde das Laufverhalten von ganzen Fliegenpopulationen aufgezeichnet, um zu erforschen, ob eine Fliegenpopulation einen gemeinsamen Freilauf an Laufaktivität aufweist oder nicht. Und tatsächlich konnte zum ersten Mal das Laufverhalten von ganzen Populationen aufgezeichnet werden und Sozialer Kontakt als Zeitgeber für Drosophila melanogaster bestätigt werden. Zusätzlich wurde in dieser Arbeit relative Luftfeuchtigkeit und deren Auswirkung auf die Fitness der Fliegen, als auch als potentieller Zeitgeber untersucht. Die Fliegen wurden zum Schlupf und zur Entfaltung der Flügel unterschiedlichen Luftfeuchtigkeiten ausgesetzt und es wurden Phasenverschiebungsversuche mit Luftfeuchtigkeitszyklen durchgeführt, um diese zwei verschiedenen Fragen nach Fitness und potentiellem Zeitgeber zu beantworten. Die Fruchtfliege schlüpft normalerweise in den Morgenstunden, wenn die Luftfeuchtigkeit relativ hoch ist, weshalb im Allgemeinen angenommen wird, dass dies zu diesem Zeitpunkt des Tages geschieht, um eine Austrocknung zu verhindern. Die Ergebnisse dieser Arbeit waren sehr eindeutig und demonstrierten, dass die relative Luftfeuchtigkeit keinen großen Einfluss auf die Fitness der Fliegen in Bezug auf den Schlupferfolg und korrektes Entfalten der Flügel hat und dass die Temperatur wohl eher der ausschlaggebende Faktor sein könnte. In den Phasenverschiebungsversuchen mit Luftfeuchtigkeitszyklen konnte aufgedeckt werden, dass relative Luftfeuchtigkeit keinen Zeitgeber für Drosophila melanogaster darstellt, aber die Laufaktivität der Fliegen beeinflusst und maskiert, indem das Laufverhalten bei bestimmten relativen Luftfeuchtigkeiten zugelassen oder unterdrückt wird. Außerdem wurde die Lebenserwartung der Wildtyp und Uhrmutanten Fliegenstämme unter verschiedenen Tageslängen und mit unterschiedlicher Futterqualität untersucht, um den Einfluss dieser Faktoren auf die Fitness und somit das Überleben der Fliegen auf Dauer zu charakterisieren. Wie erwartet starben die Fliegen auf dem nährstoffarmen Minimalmedium früher als auf dem nährstoffreichen Maximalmedium, aber es konnte auch ein kleiner Effekt der Tageslänge gezeigt werden. Hierbei lebten die Fliegen etwas länger, wenn die Tageslänge die Freilauf-Periodenlänge der Fliegen widerspiegelte. Diese Versuche zeigten auch einen Fitness Vorteil der Wildtyp Fliegen gegenüber der Uhrmutanten auf lange Sicht, jedoch nicht zu Beginn (in den ersten ca. 2-3 Wochen). Abschließend kann zusammengefasst werden, dass genetische Variation wichtig ist, um sich an Veränderungen in der Umwelt anzupassen und die eigene Fitness und somit Überleben zu steigern. Eine funktionelle Innere Uhr mit einer Periodenlänge von etwa 24 Stunden zu besitzen stellt einen Fitness Vorteil für die Fliegen dar, zumindest unter Konkurrenzbedingungen. Das ganze System ist sehr komplex und viele Faktoren – bekannte und noch unbekannte – spielen eine Rolle in diesem System, welches auf verschiedenen Ebenen interagiert, wie z.B. auf physiologischer, metabolistischer oder auf der Verhaltensebene. KW - Taufliege KW - Drosophila KW - Biologische Uhr KW - Tageslänge KW - Luftfeuchtigkeit KW - Drosophila melanogaster KW - Fitness Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211415 ER - TY - THES A1 - Schubert, Frank Klaus T1 - The circadian clock network of \(Drosophila\) \(melanogaster\) T1 - Das Uhrneuronennetzwerk von \(Drosophila\) \(melanogaster\) N2 - All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the “ticking clock“ over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells. N2 - Alle lebenden Organismen benötigen Mechanismen zur Zeitmessung, um sich auf periodisch wiederkehrende Umweltveränderungen einstellen zu können. Zirkadiane Uhren verleihen die Fähigkeit, tages- und jahreszeitliche Veränderungen vorauszuahnen und sich an diese anzupassen. Die Eigenschaften des zirkadianen Systems, als auch dessen molekularer Mechanismus scheinen über sämtliche Taxa konserviert zu sein. Daher bietet es sich an, die leicht handhabbare Taufliege Drosophila melanogaster als Modellorganismus zu benutzen. Das relativ kleine Gehirn (ca. 135.000 Neurone) und die herausragende genetische Zugänglichkeit der Fliege prädestinieren sie dazu, das zirkadiane System in einem komplexen, aber dennoch überschaubaren Kontext zu untersuchen. Die vergangenen 50 Jahre chronobiologischer Forschung an Drosophila führten zu einem tiefgreifenden Verständnis der molekularen Mechanismen, die für tageszeitliche Rhythmizität verantwortlich sind. Anhand zahlreicher histologischer Untersuchungen wurde die neuronale Grundlage, das Uhrneuronennetzwerk im zentralen Nervensystem, beschrieben. Nichtsdestotrotz, gibt es noch immer keine detaillierte neuroanatomische und physiologische Charakterisierung der Uhrneurone auf Einzelzellebene. Daher war das Ziel der vorliegenden Arbeit die umfangreiche Beschreibung der Einzelzellanatomie ausgewählter Uhrneurone sowie die Identifikation mutmaßlicher post- und präsynaptischer Verzweigungen. Darüber hinaus war es mir möglich, eine Methode zur Messung von Biolumineszenzrhythmen in explantierten lebenden Gehirnen zu etablieren. Mit einem Lumineszenzmikroskop können die Proteinoszillationen einzelner Uhrneurone über die Dauer mehrerer zirkadianer Zyklen aufgezeichnet werden, wodurch neue funktionale Studien ermöglicht werden. KW - Taufliege KW - Chronobiologie KW - Tagesrhythmus KW - Neuroanatomie KW - Drosophila melanogaster KW - circadian rhythms KW - single cell anatomy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157136 ER - TY - THES A1 - Gerlach, Jennifer T1 - Influence of Myc-interacting proteins on transcription and development T1 - Der Einfluss von Myc-interagierenden Proteinen auf Transkription und Entwicklung N2 - The transcription factor Myc interacts with several co-factors to regulate growth and proliferationand thereby enables normal animal development. Deregulation of Myc is associated witha wide range of human tumors. Myc binds to DNA together with its dimerization partner Max, preferentially to canonical E-box motifs, but this sequence-specific interaction is probably not sufficient for Myc’s binding to target genes. In this work, the PAF1 complex was characterized as a novel co-factor of Myc in Drosophila melanogaster. All components of the complex are required for Myc’s recruitment to chromatin, but the subunit Atu has the strongest effect on Myc's binding to target genes through ist direct physical interaction with Myc. Unexpectedly, the impact of Atu depletion on the Expression of Myc target genes was weak compared to its effect on Myc binding. However, the influence of Atu becomes more prominent in situations of elevated Myc levels in vivo . Mycrepressed as well as Myc-activated targets are affected, consistent with the notion that Myc recruitment is impaired. An independent set of analyses revealed that Myc retains substantial activity even in the complete absence of Max. The overexpression of Myc in Max0 mutants specifically blocks their pupariation without affecting their survival, which raised the possibility that Myc might affect ecdysone biosynthesis. This connection was studied in the second part of this Thesis which showed that Myc inhibits the expression of ecdysteroidogenic genes and thereby the production of ecdysone. Myc most likely affects the signaling pathways (PTTH and insulin signaling) upstream of the PG, the organ where ecdysone is produced. By combining existing ChIPseq, RNAseq and electronic annotation data, we identified five potential Maxindependent Myc targets and provided experimental data that they might be involved in Myc's effect on Max mutant animals. Together our data confirm that some Myc functions are Max-independent and they raise the possibility that this effect might play a role during replication. N2 - Der Transkriptionsfaktor Myc interagiert mit verschiedenen Cofaktoren, um Wachstum und Proliferation zu regulieren, was die normale Entwicklung von Tieren ermöglicht. Die Fehlreguliereung von Myc wird mit einer großen Anzahl menschlicher Tumore in Verbindung gebracht. Myc bindet gemeinsam mit seinem Dimerisationspartner Max an DNA, bevorzugt an kanonische E-Box Motive. Allerdings ist diese sequenz-spezifische Interaktion wahrscheinlich nicht ausreichend für die Bindung von Myc an Zielgene. In dieser Arbeit wurde der PAF1 Komplex als ein neuartiger Cofaktor von Myc in Drosophila melanogaster charakterisiert. Alle Komponenten des Komplexes sind für die Rekrutierung von Myc an Chromatin notwendig, jedoch hat die Untereinheit Atu, durch ihre direkte physische Interaktion mit Myc, den stärksten Effekt auf die Bindung von Myc an Zielgene. Verglichen mit dem Effekt auf die Bindung von Myc hatte die Depletion von Atu nur einen schwachen Einfluss auf die Expression der Myc Zielgene. In vivo ist der Einfluss von Atu stärker ausgeprägt in Situationen in denen die Myc Proteinlevel erhöht sind. Sowohl Myc-reprimierte als auch Myc-aktivierte Gene sind dadurch betroffen. Dies stimmt mit der Entdeckung überein, dass die Rekrutierung von Myc beeinträchtigt ist. Unabhängige Versuche haben gezeigt, dass Myc eine deutliche Aktivität behält auch bei vollständiger Abwesenheit von Max. Die Überexpression von Myc in Max0 Mutanten verhindert deren Verpuppung ohne ihr Überleben zu beeinträchtigen. Dies führt zu der Vermutung, dass Myc einen Einfluss auf die Biosynthese von Ecdyson hat. Diese Verbindung wurde im zweiten Teil der Arbeit untersucht und hat gezeigt, dass Myc die Expression von Genen, die an der Ecdyson-Synthese beteiligt sind, verhindert und dadurch die Produktion von Ecdyson selbst. Myc wirkt bevorzugt auf die Signalwege (PTTH und Insulin Signalkaskade) oberhalb der Prothorakaldrüse, dem Organ in dem Ecdyson produziert wird. Durch die Kombination von ChIPseq, RNAseq und der Auswertung elektronischer Daten wurden von uns fünf potentielle Max-unabhängige Zielgene von Myc identifiziert. Des weiteren haben experimentelle Daten gezeigt, dass diese in Zusammenhang mit dem Effekt von Myc auf Max0 Mutanten stehen. Zusammenfassend haben unsere Daten bestätigt, dass einige Funktionen von Myc Max-unabhängig sind und es besteht die Möglichkeit, dass dieser Effekt eine Rolle während der Replikation spielen könnte. KW - Drosophila Myc transcription growth PAF1 KW - Taufliege KW - Myc Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154917 ER - TY - THES A1 - Chen, Jiangtian T1 - Functions of allatostatin A (AstA) and myoinhibitory peptides (MIPs) in the regulation of food intake and sleep in Drosophila T1 - Funktion der Allatostatin A (AstA) und myoinhibitorische Peptide (MIP) in Bezug zu Nahrungsaufnahme und Schlaf bei Drosophila N2 - Neuropeptides and peptide hormones carrying neural or physiological information are intercellular signalling substances. They control most if not all biological processes in vertebrates and invertebrates by acting on specific receptors on the target cell. In mammals, many different neuropeptides and peptide hormones are involved in the regulation of feeding and sleep. In \textit{Drosophila}, allatostatin A (AstA) and myoinhibitory peptides (MIPs) are brain-gut peptides. The AstA receptors are homologues of the mammalian galanin receptors and the amino acid sequences of MIPs are similar to a part of galanin, which has an orexigenic effect and is implicated in the control of sleep behaviour in mammals. I am interested in dissecting pleiotropic functions of AstA and MIPs in the regulation of food intake and sleep in \textit{Drosophila}. \par In the first part of the dissertation the roles of brain-gut peptide allatostatin A are analysed. Due to the genetic and molecular tools available, the fruit fly \textit{Drosophila melanogaster} is chosen to investigate functions of AstA. The aims in this part are to identify pleiotropic functions of AstA and assign specific effects to the activity of certain subsets of AstA expressing cells in \textit{Drosophila} adults. A new and restricted \textit{AstA\textsuperscript{34}-Gal4} line was generated. The confocal imaging result showed that AstA neurons are located in the posterior lateral protocerebrum (PLP), the gnathal ganglia (GNG), the medullae, and thoracic-abdominal ganglion (TAG). AstA producing DLAa neurons in the TAG innervate hindgut and the poterior part of midgut. In addition, AstA are detected in the enteroendocrine cells (EECs).\par Thermogenetic activation and neurogenetic silencing tools with the aid of the \textit{UAS/Gal4} system were employed to manipulate the activity of all or individual subsets of AstA cells and investigate the effects on food intake, locomotor activity and sleep. Our experimental results showed that thermogenetic activation of two pairs of PLP neurons and/or AstA expressing EECs reduced food intake, which can be traced to AstA signalling by using \textit{AstA} mutants. In the locomotor activity, thermogenetic activation of two pairs of PLP neurons and/or AstA expressing EECs resulted in strongly inhibited locomotor activity and promoted sleep without sexual difference, which was most apparent during the morning and evening activity peaks. The experimental and control flies were not impaired in climbing ability. In contrast, conditional silencing of the PLP neurons and/or AstA expressing EECs reduced sleep specifically in the siesta. The arousal experiment was employed to test for the sleep intensity. Thermogenetically activated flies walked significantly slower and a shorter distance than controls for all arousal stimulus intensities. Furthermore, PDF receptor was detected in the PLP neurons and the PLP neurons reacted with an intracellular increase of cAMP upon PDF, only when PDF receptor was present. Constitutive activation of AstA cells by tethered PDF increased sleep and thermogenetic activation of the PDF producing sLNvs promoted sleep specifically in the morning and evening. \par The study shows that the PLP neurons and/or EECs vis AstA signalling subserve an anorexigenic and sleep-regulating function in \textit{Drosophila}. The PLP neurons arborise in the posterior superior protocerebrum, where the sleep relevant dopaminergic neurons are located, and EECs extend themselves to reach the gut lumen. Thus, the PLP neurons are well positioned to regulate sleep and EECs potentially modulate feeding and possibly locomotor activity and sleep during sending the nutritional information from the gut to the brain. The results of imaging, activation of the PDF signalling pathway by tethered PDF and thermoactivation of PDF expressing sLNvs suggest that the PLP neurons are modulated by PDF from sLNv clock neurons and AstA in PLP neurons is the downstream target of the central clock to modulate locomotor activity and sleep. AstA receptors are homologues of galanin receptors and both of them are involved in the regulation of feeding and sleep, which appears to be conserved in evolutionary aspect.\par In the second part of the dissertation, I analysed the role of myoinhibitory peptides. MIPs are brain-gut peptides in insects and polychaeta. Also in \textit{Drosophila}, MIPs are expressed in the CNS and EECs in the gut. Previous studies have demonstrated the functions of MIPs in the regulation of food intake, gut motility and ecdysis in moths and crickets. Yet, the functions of MIPs in the fruit fly are little known. To dissect effects of MIPs regarding feeding, locomotor activity and sleep in \textit{Drosophila melanogater}, I manipulated the activity of MIP\textsuperscript{WÜ} cells by using newly generated \textit{Mip\textsuperscript{WÜ}-Gal4} lines. Thermogenetical activation or genetical silencing of MIP\textsuperscript{WÜ} celles did not affect feeding behaviour and resulted in changes in the sleep status. \par My results are in contradiction to a recent research of Min Soohong and colleagues who demonstrated a role of MIPs in the regulation of food intake and body weight in \textit{Drosophila}. They showed that constitutive silencing of MIP\textsuperscript{KR} cells increased food intake and body weight, whereas thermogenetic activation of MIP\textsuperscript{KR} cells decreased food intake and body weight by using \textit{Mip\textsuperscript{KR}-Gal4} driver. Then I repeated the experiments with the \textit{Mip\textsuperscript{KR}-Gal4} driver, but could not reproduce the results. Interestingly, I just observed the opposite phenotype. When MIP\textsuperscript{KR} cells were silenced by expressing UAS-tetanus toxin (\textit{UAS-TNT}), the \textit{Mip\textsuperscript{KR}$>$TNT} flies showed reduced food intake. The thermogenetic activation of MIP\textsuperscript{KR} cells did not affect food intake. Furthermore, I observed that the thermogenetic activation of MIP\textsuperscript{KR} cells strongly reduced the sleep duration.\par In the third part of the dissertation, I adapted and improved a method for metabolic labelling for \textit{Drosophila} peptides to quantify the relative amount of peptides and the released peptides by mass spectrometry under different physiological and behavioural conditions. qRT-PCR is a practical technique to measure the transcription and the corresponding mRNA level of a given peptide. However, this is not the only way to measure the translation and production of peptides. Although the amount of peptides can be quantified by mass spectrometry, it is not possible to distinguish between peptides stored in vesicles and released peptides in CNS extracts. I construct an approach to assess the released peptides, which can be calculated by comparing the relative amount of peptides between two timepoints in combination with the mRNA levels which can be used as semiquantitative proxy reflecting the production of peptides during this period. \par After optimizing the protocol for metabolic labelling, I carried out a quantitative analysis of peptides before and after eclosion as a test. I was able to show that the EH- and SIFa-related peptides were strongly reduced after eclosion. This is in line with the known function and release of EH during eclosion. Since this test was positive, I next used the metabolic labelling in \textit{Drosophila} adult, which were either fed \textit{ad libitum} or starved for 24 hrs, and analysed the effects on the amount of AstA and MIPs. In the mRNA level, my results showed that in the brain \textit{AstA} mRNA level in the 24 hrs starved flies was increased compared to in the \textit{ad libitum} fed flies, whereas in the gut the \textit{AstA} mRNA level was decreased. Starvation induced the reduction of \textit{Mip} mRNA level in the brain and gut. Unfortunately, due to technical problems I was unable to analyse the metabolic labelled peptides during the course of this thesis.\par N2 - Neuropeptide und Peptidhormone sind interzelluläre Botenstoffe, die neuronale und physiologische Informationen tragen. Sie kontrollieren die meisten - wenn nicht alle - biologische Prozesse in Wirbeltieren und Wirbellosen durch ihre Wirkung auf spezifische Rezeptoren an den Zielzellen. So sind bei Säugetieren z.B. viele unterschiedliche Neuropeptide an der Regulierung des Freßverhaltens und des Schlafs beteiligt. In \textit{Drosophila} sind Allatostatin A (AstA) und myoinhibitorische Peptide (MIP) typische Gehirn-Darm- Peptide. Die AstA-Rezeptoren sind Homologe des Galanin-Rezeptors der Wirbeltiere, und die Aminosäurensequenz von MIP sind ähnlich zu einer Teilsequenz von Galanin, welches einen orexigenischen Effekt hat und mit der Kontrolle des Schlafverhaltens in Säugetieren verbunden ist. Ich bin interessiert an der Identifierung möglicher pleiotroper Funktionen von AstA und MIP in der Regulation von Nahrungsaufnahme und Schlaf in \textit{Drosophila}. \par Im ersten Teil der Dissertation wird die Rolle der Hirn-Darm- Peptide der AstA-Familie analysiert. Aufgrund der verfügbaren genetischen und molekularen Werkzeuge wurde die Taufliege \textit{Drosophila melanogaster} als Modell ausgewählt, um die Funktionen von AstA zu erforschen. Der Fokus lag dabei darauf, die pleiotropen Funktionen von AstA zu identifizieren, und herauszufinden, ob den verschiedenen AstA-exprimierenden Zelltypen jeweils unterschiedliche Funktionen zukommen. Eine neue, eingeschränkte AstA-Gal4-Linie wurde generiert. AstA-exprimierende Neuronen lassen sich im posterio-lateralen Protocerebrum (PLP), dem Gnathalganglion (GNG), der Medulla und dem thorakal-abdominalen Ganglion(TAG) finden. DLAa-Neuronen im TAG innervieren den Enddarm und den vorderen Teil des Mitteldarms. Ausserdem wird AstA auch in enteroendokrinen Zellen (EEC) im Mitteldarm exprimiert.\par Thermogenetische Aktivierung und neurogenetische Stillegung wurden zusammen mithilfe des UAS/Gal4-Systems eingesetzt, um die Aktivität vieler oder einzelner Untergruppen von AstA-Zellen zu manipulieren und die Effekte auf Nahrungsaufnahme, Laufaktivität und Schlaf zu untersuchen. Unsere Ergebnisse zeigen, dass die thermogenetische Aktivierung der zwei Paare von PLP-Neuronen und/oder AstA-exprimierenden EEC Schlaf und Nahrungsaufnahme reduziert, was auf die signalisierende Funktion von AstA zurückzuführen ist. In der Laufaktivität führte die thermogenetische Aktivierung der zwei Paare von PLP-Neuronen und/oder AstA-exprimierende EEC zu starker Hemmung, und förderte Schlaf ohne geschlechtsspezifischen Unterschied, was während der Aktivitätsgipfel am Morgen und Abend am besten zu beobachten war. Die Experimental- sowie die Kontrollfliegen waren im generellen Klettervermögen nicht beeinträchtigt. In Kontrast dazu reduzierte eine konditionale Stillegung von PLP-Neuronen und allen \textit{AstA-Gal4} exprimierenden Neuronen besonders den Siesta-Schlaf. Fliegen mit thermogenetisch aktivierten AstA-Zellen liefen wesentlich langsamer und weniger als die Kontrollgruppe bei allen Erregungsintensitäten. Außerdem wurde der PDF-Rezeptor in den PLP-Neuronen ermittelt. Die PLP-Neuronen reagierten auf PDF-Gabe mit einem intrazellulären Anstieg von cAMP nur dann, wenn der PDF-Rezeptor anwesend war. Konstitutive Aktivierung von AstA-Zellen durch "tethered" PDF steigerte den Schlaf, und thermogenetische Aktivierung von PDF-produzierenden sLNvs förderte Schlaf besonders am Morgen und Abend.\par Die Studie zeigt, dass die PLP-Neuronen und/oder EECs via AstA eine anorexigenische und schlafregulierende Funktion in \text{Drosophila} ausübt. PLP-Neuronen verzweigen im posterio-superioren Protocerebrum, wo die für Schlaf relevanten dopaminergen Neurone lokalisiert sind. Die EECs erstrecken sich bis zum Darmlumen. Daher sind die PLP-Neuronen gut positioniert, um Schlaf zu regulieren, und EECs modulieren potenziell die Verdauung und möglicherweise auch Laufaktivität und Schlaf durch Vermittlung der Nahrungsinformationen vom Darm zum Gehirn. Die Ergebnisse von Imaging, Aktivierung des PDF-wegs durch "tethered" PDF und Thermoaktivierung von PDF-exprimierenden s-LNvs weisen darauf hin, dass die PLP-Neuronen durch PDF aus sLNv-Uhr-Neuronen moduliert werden. AstA in den PLP-Neuronen scheint ein indirektes Ausgangssignal der inneren Uhr das die Laufaktivität und Schlaf modelliert. Die AstA-Rezeptoren sind Homologe der Galanin-Rezeptoren; beide sind an der Regulierung von Ernährung und Schlaf beteiligt, was auf eine evolutionär bewahrte Funktion hindeutet. \par Im zweiten Teil der Dissertation habe ich die Rolle der MIP analysiert. MIP sind Hirn-Darm- Peptide der Insekten und Polychaeta. Auch in \textit{Drosophila} wird MIP durch Neurone im ZNS und durch EEC im Darm exprimiert. Bisherige Studien haben Funktionen von MIP bei der Nahrungsaufnahme, Regulation der Darmbewegung und Häutung in Motten und Grillen demonstriert. Für \textit{Drosophila} waren Funktionen von MIP nicht bekannt. Um mögliche Effekte von MIP bezüglich des Freßverhaltens, Laufaktivität und und Schlaf in \textit{Drosophila melanogaster} zu finden, habe ich die Aktivität von MIP\textsuperscript{WÜ}-Zellen mit Hilfe der neu in unserem Labor hergestellten \textit{Mip\textsuperscript{WÜ} -Gal4}-Linien manipuliert. Dabei konnte ich keinen Effekt auf das Freßverhalten finden, nachdem ich die MIP\textsuperscript{WÜ}–Zellen thermogenetisch aktiviert oder genetisch stillgelegt habe. Allerdings führte dies zu Änderungen des Schlafstatuses. \par Meine Ergebnisse stehen im Widerspruch zu einer neueren Veröffentlichung von Min Soohong und Kollegen, die eine Rolle der MIP in der Regulation von Nahrungsaufnahme und Körpergewicht von \textit{Drosophila} nachweisen konnten. Sie zeigten dass konstitutive Stillegung der MIP\textsuperscript{KR}-Zellen Nahrungsaufnahme und Körpergewicht steigerte, während thermogenetische Aktivierung der MIP\textsuperscript{KR}-Zellen Nahrungsaufnahme und Körpergewicht durch \textit{MIP\textsuperscript{KR}-Gal4}-Treiber verringerte. Ich habe daraufhin die Versuche mit der von Soohong eingesetzen \textit{Mip\textsuperscript{KR}-Gal4}-Treiber wiederholt, konnte aber damit die Ergebnisse nicht bestätigen. Interessanterweise habe ich genau das Gegenteil beobachtet. Wenn ich MIP\textsuperscript{KR}-Zellen durch Expresseion von UAS-Tetanustoxin (UAS-TNT) ausgeschaltet habe, zeigten die \textit{Mip\textsuperscript{KR}$>$TNT}-Fliegen eine reduzierte Nahrungsaufnahme. Eine thermogenetische Aktivierung der MIP\textsuperscript{KR}-Zellen hat die Nahrungsaufnahme nicht beeinflusst. Weiterhin habe ich beobachtet, dass die thermogenetische Aktivierung der MIP\textsuperscript{KR}-Zellen die Schlafdauer stark reduziert.\par Im dritten Teil der Dissertation haben ich eine Methode zur metabolischen Markierung für \textit{Drosophila}-Peptide adaptiert und verbessert, um die relative Menge von Peptiden und die Peptidausschüttung mittels Massenspektrometrie unter verschiedenen physiologischen Bedingungen und Verhaltenskontexten zu quantifizieren. qRT-PCR ist eine praktische Technik um die Transkription und die entsprechende mRNA-Menge für ein gegebenes Peptid zu messen. Dies ist allerdings kein zwingendes Maß für die Translation und Menge eines Peptids. Massenspektrometisch kann die Peptidmenge zwar quantifiziert werden, es kann aber nicht zwischen in Vesikel gespeicherten Peptiden und ausgeschütteten Peptiden in ZNS-Extrakten unterschieden werden. Ich habe nach einem Zugang zu den ausgeschütteten Peptiden gesucht, die durch Vergleich der relativen Menge der Peptide zwischen zwei Zeitpunkten kalkuliert werden können, wenn die mRNA-Menge, welche ein semiquantitatives Proxy der Produktion der Peptide in dieser Periode darstellt, bekannt ist. \par Nachdem ich das Protokoll für die metabolische Markierung optimiert hatte, habe ich als Test eine quantitative Peptidomanalyse vor und nach dem Adultschlupf durchgeführt. Dabei konnte ich zeigen, dass die EH- und SIFa-relatierte Peptide nach dem Schlupf stark reduziert sind. Dies passt gut überein mit der bekannten Funktion und Freisetzung von EH während des Schlupfs. Da dieser Test positiv war, habe ich dann als nächsten Schritt die metabolische Markierung in adulten \textit{Drosophila} eingesetzt, die für 24h entweder \textit{ad libitum} gefüttert oder gehungert wurden, und geschaut, wie sich dies auf die Menge der AstA und MIP auswirkt. Meine Ergebnisse zeigten, dass das \textit{AstA} mRNA-Niveau im Gehirn der Fliegen, die 24 Stunden gehungert haben im Vergleich zu \textit{ad libitum} gefütterten Fliegen steigt, während das \textit{AstA} mRNA-Niveau im Darm sank. Hunger führte zur Reduzierung des \textit{Mip} mRNA-Spiegels in Gehirn und Darm. Wegen technischer Probleme konnte ich die metabolisch markierten Peptide während meiner Forschungsphase leider nicht mehr analysieren. \par KW - AstA KW - MIPs KW - Nahrungsaufnahme KW - Schlaf KW - Taufliege KW - Peptide KW - Drosophila Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156838 ER - TY - THES A1 - Ruf, Franziska T1 - The circadian regulation of eclosion in \(Drosophila\) \(melanogaster\) T1 - Die zeitliche Steuerung des Adultschlupfes in \(Drosophila\) \(melanogaster\) N2 - Eclosion is the emergence of an adult insect from the pupal case at the end of development. In the fruit fly Drosophila melanogaster, eclosion is a circadian clock-gated event and is regulated by various peptides. When studied on the population level, eclosion reveals a clear rhythmicity with a peak at the beginning of the light-phase that persists also under constant conditions. It is a long standing hypothesis that eclosion gating to the morning hours with more humid conditions is an adaption to reduce water loss and increase the survival. Eclosion behavior, including the motor pattern required for the fly to hatch out of the puparium, is orchestrated by a well-characterized cascade of peptides. The main components are ecdysis-triggering hormone (ETH), eclosion hormone (EH) and crustacean cardioactive peptide (CCAP). The molt is initiated by a peak level and pupal ecdysis by a subsequent decline of the ecdysteroid ecdysone. Ecdysteroids are produced by the prothoracic gland (PG), an endocrine tissue that contains a peripheral clock and degenerates shortly after eclosion. Production and release of ecdysteroids are regulated by the prothoracicotropic hormone (PTTH). Although many aspects of the circadian clock and the peptidergic control of the eclosion behavior are known, it still remains unclear how both systems are interconnected. The aim of this dissertation research was to dissect this connection and evaluate the importance of different Zeitgebers on eclosion rhythmicity under natural conditions. Potential interactions between the central clock and the peptides regulating ecdysis motor behavior were evaluated by analyzing the influence of CCAP on eclosion rhythmicity. Ablation and silencing of CCAP neurons, as well as CCAP null-mutation did not affect eclosion rhythmicity under either light or temperature entrainment nor under natural conditions. To dissect the connection between the central and the peripheral clock, PTTH neurons were ablated. Monitoring eclosion under light and temperature entrainment revealed that eclosion became arrhythmic under constant conditions. However, qPCR expression analysis revealed no evidence for cycling of Ptth mRNA in pharate flies. To test for a connection with pigment-dispersing factor (PDF)-expressing neurons, the PDF receptor (PDFR) and short neuropeptide F receptor (sNPFR) were knocked down in the PTTH neurons. Knockdown of sNPFR, but not PDFR, resulted in arrhythmic eclosion under constant darkness conditions. PCR analysis of the PTTH receptor, Torso, revealed its expression in the PG and the gonads, but not in the brain or eyes, of pharate flies. Knockdown of torso in the PG lead to arrhythmicity under constant conditions, which provides strong evidence for the specific effect of PTTH on the PG. These results suggest connections from the PDF positive lateral neurons to the PTTH neurons via sNPF signaling, and to the PG via PTTH and Torso. This interaction presumably couples the period of the peripheral clock in the PG to that of the central clock in the brain. To identify a starting signal for eclosion and possible further candidates in the regulation of eclosion behavior, chemically defined peptidergic and aminergic neurons were optogenetically activated in pharate pupae via ChR2-XXL. This screen approach revealed two candidates for the regulation of eclosion behavior: Dromyosuppressin (DMS) and myo-inhibitory peptides (MIP). However, ablation of DMS neurons did not affect eclosion rhythmicity or success and the exact function of MIP must be evaluated in future studies. To assess the importance of the clock and of possible Zeitgebers in nature, eclosion of the wildtype Canton S and the clock mutant per01 and the PDF signaling mutants pdf01 and han5304 was monitored under natural conditions. For this purpose, the Würzburg eclosion monitor (WEclMon) was developed, which is a new open monitoring system that allows direct exposure of pupae to the environment. A general decline of rhythmicity under natural conditions compared to laboratory conditions was observed in all tested strains. While the wildtype and the pdf01 and han5304 mutants stayed weakly rhythmic, the per01 mutant flies eclosed mostly arrhythmic. PDF and its receptor (PDFR encoded by han) are required for the synchronization of the clock network and functional loss can obviously be compensated by a persisting synchronization to external Zeitgebers. The loss of the central clock protein PER, however, lead to a non-functional clock and revealed the absolute importance of the clock for eclosion rhythmicity. To quantitatively analyze the effect of the clock and abiotic factors on eclosion rhythmicity, a statistical model was developed in cooperation with Oliver Mitesser and Thomas Hovestadt. The modelling results confirmed the clock as the most important factor for eclosion rhythmicity. Moreover, temperature was found to have the strongest effect on the actual shape of the daily emergence pattern, while light has only minor effects. Relative humidity could be excluded as Zeitgeber for eclosion and therefore was not further analyzed. Taken together, the present dissertation identified the so far unknown connection between the central and peripheral clock regulating eclosion. Furthermore, a new method for the analysis of eclosion rhythms under natural conditions was established and the necessity of a functional clock for rhythmic eclosion even in the presence of multiple Zeitgebers was shown. N2 - Der Schlupf adulter Fliegen aus dem Puparium wird in der Taufliege Drosophila melanogaster zum einen von der inneren Uhr und zum anderen von Peptiden gesteuert. Beobachtet man den Schlupf auf der Populationsebene, lässt sich erkennen, dass die meisten Fliegen zu Beginn der Lichtphase schlüpfen. Diese Rhythmizität im Schlupfverhalten von Fliegenpopulationen hält auch unter konstanten Bedingungen an. Seit langer Zeit wird angenommen, dass der Schlupf am Morgen eine Anpassung an feuchte Bedingungen ist, wodurch der Wasserverlust verringert und die Überlebenswahrscheinlichkeit erhöht werden könnte. Das stereotype motorische Schlupfverhalten, mit dem sich die Fliege aus der Puppenhülle befreit, wird durch das gut untersuchte Zusammenspiel zahlreicher Peptide gesteuert. Die wichtigsten Peptide sind hierbei das ecdysis-triggering hormone (ETH), das Schlupfhormon (EH) und das crustacean cardioactive peptide (CCAP). Wie bei jedem Schlupf wird die Häutung durch eine stark erhöhte Produktion des Ecdysteroids Ecdyson ausgelöst. Der anschließende Abfall der Ecdyson-Titer löst dann den Adultschlupf aus. Ecdysteroide werden in der Prothorakaldrüse (PD) gebildet, die eine periphere Uhr besitzt und kurz nach dem Adultschlupf zurückgebildet wird. Das prothorakotrope Hormon (PTTH) reguliert sowohl die Produktion als auch die Freisetzung der Ecdysteroide aus der PD. Obwohl bereits viel über den Aufbau und die Funktionsweise der inneren Uhr und der Kontrolle des Adultschlupfes durch Peptide bekannt ist, weiß man bisher nicht, wie beide Systeme miteinander interagieren. Das Hauptziel der vorliegenden Arbeit war es, einerseits diese Verbindung zu untersuchen und andererseits die Gewichtung verschiedener Zeitgeber für den Adultschlupf unter natürlichen Bedingungen zu bewerten. Um eine mögliche Verbindung zwischen der zentralen Uhr und den Peptiden, die das motorische Verhalten während des Schlupfes steuern, zu untersuchen, wurde der Einfluss von CCAP auf die Schlupfrhythmik betrachtet. Hierzu wurden die CCAP-exprimierenden Neurone genetisch ablatiert oder elektrisch stillgelegt, sowie zusätzlich eine CCAP-defiziente Mutante getestet. Weder unter künstlichen Licht- oder Temperaturzyklen, noch unter natürlichen Bedingungen wurden Effekte auf den Schlupfrhythmus bei veränderter CCAP Verfügbarkeit beobachtet. Die Verbindung zwischen der zentralen und der peripheren Uhr der PD wurde untersucht, indem die PTTH-exprimierenden Neurone in Fliegen ablatiert wurden. Dies führte sowohl unter konstanten Licht- als auch Temperaturbedingungen zu arrhythmischem Schlupf der Populationen. Die Analyse der Expression von Ptth mRNA mittels qPCR lieferte keine Hinweise auf eine zyklische Regulation des Ptth Transkripts in pharaten Tieren. Um eine Verbindung zu pigment-dispersing factor (PDF)-exprimierenden Uhrneuronen nachzuweisen, wurden die Rezeptoren von PDF (PDFR) und dem short Neuropeptide F (sNPFR) in den PTTH- Neuronen herunterreguliert. Nur der Verlust von sNPFR führte unter konstanten Bedingungen zu arrhythmischem Schlupf. RT-PCR-Analyse der mRNA Expression des Rezeptors von PTTH, Torso, ergab, dass torso mRNA in pharaten Fliegen nur in der PD und in den Gonaden exprimiert wird, nicht jedoch im Gehirn. Das Herrunterregulieren der torso mRNA in der PD führte unter konstanten Bedingungen zu arrhythmischem Schlupf und lieferte deutliche Hinweise zur spezifischen Funktion von PTTH in der PD. Diese Ergebnisse zeigen eine sNPF-vermittelte Verbindung zwischen den PDF-positiven lateralen Neuronen und den PTTH-Neuronen, welche über PTTH und Torso weiter bis in die PD reicht. Durch diese Verbindung wird vermutlich die Periode der peripheren Uhr in der PD an die Periode der zentralen Uhr im Gehirn angepasst. Um ein Startsignal für den Adultschlupf und weitere mögliche Kandidaten, die eine Rolle in der Steuerung des Schlupfes spielen, zu identifizieren, wurden chemisch definierte kleine Gruppen peptiderger und aminerger Neurone optogenetisch durch das Kanalrhodopsin ChR2-XXL aktiviert. In dieser Testreihe wurden Dromyosuppressin (DMS) und myoinhibitorisches Peptid (MIP) als mögliche Kandidaten ermittelt. Eine Ablation der DMS-Neurone hatte jedoch keine Auswirkungen auf Schlupfrhythmik und -erfolg. Die genaue Funktion von MIP sollte in zukünftigen Experimenten untersucht werden. Um die Gewichtung der Uhr und möglicher Zeitgeber für das natürliche Verhalten zu bestimmen, wurde der Schlupf des Wildtyps Canton S, der Uhrmutante per01 sowie der PDF-Signalwegsmutanten pdf01 und han5304 (han codiert für den PDFR) unter natürlichen Bedingungen beobachtet. Hierfür wurde ein neues und offenes Aufzeichnungssystem entwickelt: der Würzburger Schlupfmonitor (WEclMon), der einen direkten Kontakt der Puppen mit den sie umgebenden abiotischen Bedingungen ermöglicht. Im Vergleich zu Laborbedingungen war die Rhythmizität des Schlupfes unter natürlichen Bedingungen in allen getesteten Fliegenlinien weniger ausgeprägt. Während der Wildtyp sowie die pdf01 und han5304 Mutanten weiterhin schwach rhythmisch schlüpften, schlüpfte die per01 Mutante hauptsächlich arrhythmisch. Das Zusammenspiel zwischen PDF und seinem Rezeptor synchronisiert das Uhrnetzwerk, und der Verlust dieser Interaktion kann durch tägliches neues Ausrichten an den Zeitgebern ausgeglichen werden. Der Verlust des Uhrproteins PER unterbindet jedoch die komplette Funktionsfähigkeit der Uhr. Dadurch wird die Notwendigkeit der Uhr für einen rhythmischen Schlupf unterstrichen. Um den Einfluss der Uhr und abiotischer Faktoren auf den Schlupfrhythmus zu untersuchen, wurde im Rahmen einer Kooperation mit Oliver Mitesser und Thomas Hovestadt ein statistisches Modell entwickelt. Die Ergebnisse der Modellierung unterstützen die Hypothese, dass die Uhr der wichtigste Faktor für einen rhythmischen Schlupf auch unter Zeitgeber-Bedingungen ist. Die Umgebungstemperatur übt hingegen den stärksten Einfluss auf die Form des täglichen Schlupfmusters aus, während Licht hier nur einen schwachen Einfluss hat. Es konnte gezeigt werden, dass sich relative Luftfeuchtigkeit nicht als Zeitgeber für den Schlupf eignet, weshalb sie in weiteren Untersuchungen nicht berücksichtigt wurde. Zusammenfassend lässt sich sagen, dass mit der vorliegenden Arbeit die Verbindung zwischen der zentralen und peripheren Uhr in der Steuerung des Schlupfes identifiziert werden konnten, die bisher nicht bekannt war. Außerdem wurde eine neue Methode der Untersuchung des Adultschlupfes unter natürlichen Bedingungen etabliert und die Notwendigkeit einer intakten Uhr für einen rhythmischen Adultschlupf selbst in Anwesenheit mehrerer Zeitgeber konnte herausgestellt werden. KW - Taufliege KW - Tagesrhythmus KW - Adultschlupfes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146265 ER - TY - THES A1 - Guan, Chonglin T1 - Functional and genetic dissection of mechanosensory organs of \(Drosophila\) \(melanogaster\) T1 - Funktionelle und genetische Analyse von mmechanosensorischen Organe in \(Drosophila\) \(melanogaster\) N2 - In Drosophila larvae and adults, chordotonal organs (chos) are highly versatile mechanosensors that are essential for proprioception, touch sensation and hearing. Chos share molecular, anatomical and functional properties with the inner ear hair cells of mammals. These multiple similarities make chos powerful models for the molecular study of mechanosensation. In the present study, I have developed a preparation to directly record from the sensory neurons of larval chos (from the lateral chos or lch5) and managed to correlate defined mechanical inputs with the corresponding electrical outputs. The findings of this setup are described in several case studies. (1) The basal functional lch5 parameters, including the time course of response during continuous mechanical stimulation and the recovery time between successive bouts of stimulation, was characterized. (2) The calcium-independent receptor of α-latrotoxin (dCIRL/Latrophilin), an Adhesion class G protein-coupled receptor (aGPCR), is identified as a modulator of the mechanical signals perceived by lch5 neurons. The results indicate that dCIRL/Latrophilin is required for the perception of external and internal mechanical stimuli and shapes the sensitivity of neuronal mechanosensation. (3) By combining this setup with optogenetics, I have confirmed that dCIRL modulates lch5 neuronal activity at the level of their receptor current (sensory encoding) rather than their ability to generate action potentials. (4) dCIRL´s structural properties (e.g. ectodomain length) are essential for the mechanosensitive properties of chordotonal neurons. (5) The versatility of chos also provides an opportunity to study multimodalities at multiple levels. In this context, I performed an experiment to directly record neuronal activities at different temperatures. The results show that both spontaneous and mechanically evoked activity increase in proportion to temperature, suggesting that dCIRL is not required for thermosensation in chos. These findings, from the development of an assay of sound/vibration sensation, to neuronal signal processing, to molecular aspects of mechanosensory transduction, have provided the first insights into the mechanosensitivity of dCIRL. In addition to the functional screening of peripheral sensory neurons, another electrophysiological approach was applied in the central nervous system: dCIRL may impact the excitability of the motor neurons in the ventral nerve cord (VNC). In the second part of my work, whole-cell patch clamp recordings of motor neuron somata demonstrated that action potential firing in the dCirl\(^K\)\(^O\) did not differ from control samples, indicating comparable membrane excitability. N2 - In Drosophila Larven, sowie in adulten Tieren, sind die Chordotonalorgane (Chos) sehr vielseitige Mechanosensoren und von wesentlicher Bedeutung für die Propriozeption, das Tastgefühl und die auditive Wahrnehmung. Chos teilen molekulare, anatomische und funktionelle Eigenschaften mit Innenohrhaarzellen der Säugetiere und machen sie somit zu leistungsstarken Modellen um molekulare Mechanismen der Mechanosensorik zu untersuchen. In der vorliegenden Studie habe ich ein Präparat entwickelt, um direkt von sensorischen Neuronen der larvalen Chos (von lateralen Chos oder lch5) abzuleiten und definierte mechanische Eingänge mit den korrelierenden elektrischen Ausgängen zu verbinden. Im Folgenden sind die Ergebnisse dieses experimentellen Setups zusammengefasst. (1) Die basalen funktionellen Parameter von lch5 insbesondere der Zeitverlauf der Reaktion während kontinuierlicher mechanischer Stimulation und die Erholungszeit zwischen aufeinanderfolgenden Stimulationen wurden bestimmt. (2) Der Calcium-unabhängige Rezeptor von α-Latrotoxin (dCIRL/Latrophilin), ein Adhäsion Klasse G-Protein-gekoppelter Rezeptor (GPCR) wurde als Modulator der von Ich5 Neuronen perzipierten mechanischen Signale identifiziert. Die Ergebnisse zeigen, dass dCIRL/Latrophilin für die Wahrnehmung der externen und internen mechanischen Reize erforderlich ist und die Empfindlichkeit neuronaler Mechanosensorik modelliert. (3) Mit Hilfe optogenetischer Werkzeuge konnte ich bestätigen, dass dCIRL die Aktivität von lch5 Neuronen auf Ebene des Rezeptorstroms (sensorische Kodierung) und nicht der Generierung von Aktionspotentialen moduliert. (4) Die strukturellen Eigenschaften von dCIRL (z.B. Ektodomänenlänge) sind wesentlich für die mechanosensitiven Eigenschaften von Chos. (5) Die Vielseitigkeit der Chos bietet des Weiteren die Möglichkeit, Multimodalitäten auf mehreren Ebenen zu untersuchen. In diesem Zusammenhang wurde die neuronale Aktivität der Chos bei verschiedenen Temperaturen analysiert. Die Ergebnisse zeigen, dass sich sowohl spontane als auch mechanisch evozierte Aktivität im Verhältnis zur Temperatur erhöhen, was darauf hindeutet, dass dCIRL keine Rolle in der Temperaturwahrnehmung spielt. Diese Erkenntnisse, von der Entwicklung des Präparats der Ton/Vibrations Wahrnehmung, über die neuronalen Signalverarbeitung bis hin zu molekularen Aspekten der Mechanotransduktion, haben erste Einblicke in die Mechanosensitivität von dCIRL gewährt. Neben der funktionellen Charakterisierung peripherer sensorischer Neurone wurde ein weiterer elektrophysiologischer Ansatz im larvalen Zentralnervensystem gewählt, um zu untersuchen, ob sich dCIRL auf die Erregbarkeit motorischer Nervenzellen im Strickleiternervensystem (VNC) auswirkt. Im zweiten Teil meiner Arbeit wird mit Hilfe des whole-cell-patch-clamp-Verfahrens gezeigt, dass die Aktionspotentialfrequenz in Motoneuronen von dCirl\(^K\)\(^O\) Mutanten ähnlich derer von Kontrolltieren ist, d.h. ihre Membranerregbarkeit ist vergleichbar. KW - Taufliege KW - Drosophila KW - Mechanosensation KW - Adhesion-GPCR KW - Electrophysiology KW - Mechanorezeptor KW - Elektrophysiologie KW - Chordontonal organ Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146220 ER - TY - THES A1 - Herter, Eva Kristine T1 - Characterization of direct Myc target genes in Drosophila melanogaster and Investigating the interaction of Chinmo and Myc T1 - Charakterisierung direkter Myc Zielgene in Drosophila melanogaster und Interaktionsanalyse der Proteine Chinmo und Myc N2 - The correct regulation of cell growth and proliferation is essential during normal animal development. Myc proteins function as transcription factors, being involved in the con-trol of many growth- and proliferation-associated genes and deregulation of Myc is one of the main driving factors of human malignancies. The first part of this thesis focuses on the identification of directly regulated Myc target genes in Drosophila melanogaster, by combining ChIPseq and RNAseq approaches. The analysis results in a core set of Myc target genes of less than 300 genes which are mainly involved in ribosome biogenesis. Among these genes we identify a novel class of Myc targets, the non-coding small nucleolar RNAs (snoRNAs). In vivo studies show that loss of snoRNAs not only impairs growth during normal development, but that overexpression of several snoRNAs can also enhance tumor development in a neu-ronal tumor model. Together the data show that Myc acts as a master regulator of ribo-some biogenesis and that Myc’s transforming effects in tumor development are at least partially mediated by the snoRNAs. In the second part of the thesis, the interaction of Myc and the Zf-protein Chinmo is described. Co-immunoprecipitations of the two proteins performed under endogenous and exogenous conditions show that they interact physically and that neither the two Zf-domains nor the BTB/POZ-domain of Chinmo are important for this interaction. Fur-thermore ChIP experiments and Myc dependent luciferase assays show that Chinmo and Myc share common target genes, and that Chinmo is presumably also involved in their regulation. While the exact way of how Myc and Chinmo genetically interact with each other still has to be investigated, we show that their interaction is important in a tumor model. Overexpression of the tumor-suppressors Ras and Chinmo leads to tu-mor formation in Drosophila larvae, which is drastically impaired upon loss of Myc. N2 - Die korrekte Regulation von Zellwachstum und Proliferation ist von entscheidender Bedeutung für die Entwicklung von Tieren. Myc-Proteine fungieren als Transkriptions-faktoren, die in die Funktionskontrolle vieler Gene eingebunden sind die eine Rolle bei Zellwachstum und Proliferation spielen. Fehlregulierung von Myc ist ein Hauptfaktor menschlicher Tumorbildung. Der erste Teil dieser Dissertation beschäftigt sich mit der Identifizierung direkt regulierter Myc Zielgene in Drosophila melanogaster durch Kombination von ChIPseq und RNAseq Analysen. Insgesamt wurde eine Hauptgruppe von weniger als 300 Myc Ziel-genen identifiziert, von denen der Großteil eine Funktion in der Ribosomen Biogenese hat. Unter diesen Genen haben wir eine neue Klasse an Myc Zielgenen identifiziert, die nicht-codierenden „small nucleolar RNAs“ (snoRNAs). In vivo Experimente zeigen, dass der Verlust der snoRNAs nicht nur das Wachstum während der natürlichen Ent-wicklung beeinträchtigt, sondern auch, dass Überexpression verschiedener snoRNAs die Tumorbildung in einem neuronalen Tumormodel begünstigt. Zusammenfassend zeigen die Daten, dass Myc maßgeblich Ribosomen Biogenese steuert und dass der transformierende Effekt, den Myc in der Tumorentwicklung inne hat, zumindest teilwei-se durch die snoRNAs gesteuert wird. Im zweiten Teil der Arbeit wird die Interaktion von Myc und dem Zink-Finger Protein Chinmo beschrieben. Co-Immunoprezipitationen der zwei Proteine die unter endogenen und exogenen Bedingungen durchgeführt wurden zeigen, dass sie physisch miteinander interagieren und dass weder Chinmos Zf-Domänen noch seine BTB/POZ-Domäne für diese Interaktion verantwortlich sind. ChIP-Versuche und Myc abhängige Luciferase-Assays zeigen weiterhin, dass Chinmo und Myc gemeinsame Zielgene besitzen und dass Chinmo darüber hinaus wahrscheinlich auch an ihrer Regulation beteiligt ist. Während der genaue Zusammenhang der genetischen Interaktionen von Myc und Chinmo noch ungewiss ist und weiterer Untersuchungen bedarf, kann gezeigt werden, dass die Interaktion der beiden Proteine in einem Tumormodel eine Rolle spielt. Die Tumorbildung die durch Überexpression des Tumorsuppressors Ras zusammen mit Chinmo hervorgerufen wird, wird durch den Verlust von Myc stark reduziert. KW - Myc KW - Drosophila melanogaster KW - Transcription KW - snoRNA KW - Ribosome KW - Growth KW - Taufliege KW - Transkription Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122272 ER - TY - THES A1 - Eck, Saskia T1 - The impact of thermogenetic depolarizations of specific clock neurons on Drosophila melanogaster's circadian clock T1 - Der Einfluss thermogenetischer Depolarisationen spezifischer Uhrneurone auf Drosophila melanogasters circadiane Uhr N2 - The rotation of the earth around its own axis determines periodically changing environmental conditions, like alterations in light and temperature. For the purpose of adapting all organisms’ behavior, physiology and metabolism to recurring changes, endogenous clocks have evolved, which allow the organisms to anticipate environmental changes. In chronobiology, the scientific field dealing with the investigation of the underlying mechanisms of the endogenous clock, the fruit fly Drosophila melanogaster serves as a beneficial model organism. The fruit fly’s circadian clock exhibits a rather simple anatomical organization, but nevertheless constitutes homologies to the mammalian system. Thus also in this PhD-thesis the fruit fly was used to decipher general features of the circadian clock’s interneuronal communication. Drosophila melanogaster’s circadian clock consists of about 150 clock neurons, which are located in the central nervous system of the fly. These clock neurons can be subdivided regarding to their anatomical position in the brain into the dorsal neurons (DN1s, DN2s, DN3s), as well as into the lateral neurons (LPNs, LNds, s-LNvs, l-LNvs). Functionally these clock neuron clusters can be classified as Morning- and Evening oscillators (M- and E- oscillators), driving different parts of the fly’s locomotor activity in light-dark conditions (LD). The Morning-oscillators are represented by the s-LNvs and are known to be the main pacemakers, driving the pace of the clock in constant conditions (constant darkness; DD). The group of Evening-oscillators consists of the LNds, the DN1s and the 5th s-LNv and is important for the proper timing of the evening activity in LD. All of these clock neurons are not functionally independent, but form complex neuronal connections, which are highly plastic in their response to different environmental stimuli (Zeitgebers), like light or temperature. Even though a lot is known about the function and the importance of some clock neuron clusters, the exact interplay between the neurons is not fully known yet. To investigate the mechanisms, which are involved in communication processes among different clock neurons, we depolarized specific clock cells in a temporally and cell-type restricted manner using dTrpA1, a thermosensitive cation channel, which allows the depolarization of neurons by application of temperature pulses (TP) above 29°C to the intact and freely moving fly. Using different clock specific GAL4-driver lines and applying TPs at different time points within the circadian cycle in DD enabled us with the help of phase shift experiments to draw conclusions on the properties of the endogenous clock. The obtained phase shifts in locomotor behavior elicited by specific clock neuronal activation were plotted as phase response curves (PRCs). The depolarization of all clock neurons shifted the phase of activity the strongest, especially in the delay zone of the PRC. The exclusive depolarization of the M oscillators together with the l-LNvs (PDF+ neurons: s-LNvs & l-LNvs) caused shifts in the delay and in the advance zone as well, however the advances were severely enhanced in their temporal occurrence ranging into the subjective day. We concluded that light might have inhibitory effects on the PDF+ cells in that particular part of the PRC, as typical light PRCs do not exhibit that kind of distinctive advances. By completely excluding light in the PRC-experiments of this PhD-thesis, this photic inhibitory input to the PDF+ neurons is missing, probably causing the broadened advance zone. These findings suggest the existence of an inhibitory light-input pathway to the PDF+ cells from the photoreceptive organs (Hofbauer-Buchner eyelet, photoreceptor cells of compound eyes, ocelli) or from other clock neurons, which might inhibit phase advances during the subjective day. To get an impression of the molecular state of the clock in the delay and advance zone, staining experiments against Period (PER), one of the most important core clock components, and against the neuropeptide Pigment Dispersing Factor (PDF) were performed. The cycling of PER levels mirrored the behavioral phase shifts in experimental flies, whereas the controls were widely unaffected. As just those neurons, which had been depolarized, exhibited immediate shifted PER oscillations, this effect has to be rapidly regulated in a cell-autonomous manner. However, the molecular link between clock neuron depolarization and shifts in the molecular clock’s cycling is still missing. This issue was addressed by CREB (cAMP responsive element binding protein) quantification in the large ventrolateral neurons (l-LNvs), as these neurons responded unexpectedly and strongest to the artificial depolarization exhibiting a huge increase in PER levels. It had been previously suggested that CREB is involved in circadian rhythms by binding to regulatory sequences of the period gene (Belvin et al., 1999), thus activating its transcription. We were able to show, that CREB levels in the l-LNvs are under circadian regulation, as they exhibit higher CREB levels at the end of the subjective night relative to the end of the subjective day. That effect was further reinforced by artificial depolarization, independently of the time point of depolarization. Furthermore the data indicate that rises in CREB levels are coinciding with the time point of increases of PER levels in the l-LNvs, suggesting CREB being the molecular link between the neuronal electrical state and the molecular clock. Taking together, the results indicate that a temporal depolarization using dTrpA1 is able to significantly phase shift the clock on the behavioral and protein level. An artificial depolarization at the beginning of the subjective night caused phase delays, whereas a depolarization at the end of the subjective night resulted in advances. The activation of all clock neurons caused a PRC that roughly resembled a light-PRC. However, the depolarization of the PDF+ neurons led to a PRC exhibiting a shape that did not resemble that of a light-mediated PRC, indicating the complex processing ability of excitatory and inhibitory input by the circadian clock. Even though this experimental approach is highly artificial, just the exclusion of light-inputs enabled us to draw novel conclusions on the network communication and its light input pathways. N2 - Die Rotation der Erde um ihre eigene Achse hat periodisch verändernde Umweltbedingungen, wie beispielsweise Veränderungen in den Lichtverhältnissen und der Temperatur, zur Folge. Um das Verhalten, die Physiologie und den Metabolismus eines Organismus an stets wiederkehrende Veränderungen anzupassen, haben sich endogene/circadiane Uhren entwickelt, die es dem Organismus erlauben diese Umweltbedingungen zu antizipieren. In der Chronobiologie, einem wissenschaftlichen Fachbereich, der sich mit der Untersuchung der zugrunde liegenden Mechanismen der Inneren Uhr befasst, dient die Taufliege Drosophila melanogaster als nützlicher Modellorganismus. Die Innere Uhr der Taufliege ist anatomisch eher einfach organisiert, weist trotz alledem jedoch Homologien zum Säugersystem auf. Auch im Rahmen dieser Doktorarbeit diente die Taufliege daher dazu grundlegende Netzwerkeigenschaften der circadianen Uhr zu untersuchen. Die Innere Uhr von Drosophila melanogaster besteht aus ungefähr 150 Uhrneuronen, die sich im zentralen Nervensystem der Fliege befinden. Diese Uhrneurone können, bezüglich ihrer anatomischen Position im Gehirn in die Gruppe der dorsalen Neurone (DN1, DN2, DN3), sowie in die der lateralen Neurone untergliedert werden (LPN, LNd, s-LNv, l-LNv). Funktionell werden diese Uhrneuronengruppen als Morgen- und Abendoszillatoren (M- und E-Oszillatoren) klassifiziert, da sie für unterschiedliche Verhaltensanteile in der Laufaktivität der Fliege unter Licht-Dunkel-Verhältnissen (LD) verantwortlich sind. Die s-LNv stellen dabei die Morgenoszillatoren (M-Oszillatoren) dar und werden als Hauptschrittmacher betrachtet, da sie die Geschwindigkeit der Uhr unter konstanten Bedingungen (Dauerdunkel; DD) bestimmen. Die Gruppe der Abendoszillatoren (EOszillatoren) besteht aus den LNd, einigen DN1 und der fünften s-LNv (5th s-LNv) und ist für die richtige Terminierung der Abendaktivität in LD zuständig. All diese Uhrneurone sind funktionell nicht unabhängig voneinander, sondern bilden komplexe neuronale Verschaltungen untereinander aus, die durch einen hohen Grad an Plastizität bezüglich ihrer Reaktion auf unterschiedliche Umweltparameter (Zeitgeber), wie Licht oder Temperatur, gekennzeichnet sind. Obwohl bereits vieles hinsichtlich der Funktion und der Bedeutung einiger Gruppen von Uhrneuronen bekannt ist, ist das genaue Zusammenspiel unter ihnen immer noch recht unklar. Um die Mechanismen, die in den Kommunikationsprozessen zwischen verschiedenen Uhrneuronen involviert sind, zu untersuchen, machten wir Gebrauch von dTrpA1, einem thermosensitiven Kationenkanal, der es durch die Applizierung von Temperaturpulsen (TP) über 29°C ermöglicht, Neuronen in der intakten und sich frei bewegenden Fliege zeitlich begrenzt und zellspezifisch zu depolarisieren. Mithilfe verschiedener Uhr-spezifischer GAL4-Treiberlinien und der Verabreichung von TP zu verschiedenen Zeitpunkten des circadianen Zyklus in DD, war es uns möglich Rückschlüsse auf die Eigenschaften der Inneren Uhr anhand von Phasen-Verschiebungsexperimenten zu ziehen. Die hervorgerufenen Phasenverschiebungen im Laufverhalten, die durch die Aktivierung spezieller Uhrneuronen hervorgerufen wurden, wurden dabei als Phasen Responz Kurve (engl. phase response curve; PRC) dargestellt. Die Depolarisierung aller Uhrneurone verschob die Phase der Aktivität am stärksten, insbesondere in der Phasen-Verzögerungszone der PRC. Wurden ausschließlich die M-Oszillatoren zusammen mit den l-LNv (PDF+ Neurone: s-LNv & l-LNv) depolarisiert, wurden ebenso Phasenverschiebungen nach vorne, wie auch nach hinten hervorgerufen, jedoch reichten die Verschiebungen nach vorne deutlich in den subjektiven Tag hinein. Daraus schlussfolgerten wir, dass Licht inhibitorischen Einfluss in diesem Bereich der PRC haben muss, da typische Licht-PRCs nicht derart ausgeprägte Vorverschiebungen aufweisen. Aufgrund des vollständigen Lichtausschlusses in den PRC-Versuchen dieser Doktorarbeit fehlt jedoch dieser Licht-vermittelte inhibitorische Einfluss zu den PDF+ Neuronen und führt daher zur zeitlich stark ausgeprägten Phasen-Vorverschiebungszone. Diese Ergebnisse lassen daher vermuten, dass ein inhibitorisch wirkender Licht-vermittelter Eingang zu den PDF+ Neuronen von den photorezeptiven Organen (Hofbauer-Buchner Äuglein, Photorezeptoren der Komplexaugen, Ocellen) oder von anderen Uhrneuronen existieren muss, der die Phasen-Vorverschiebungen während des subjektiven Tages unterdrückt. Um Kenntnis über den molekularen Status der Uhr in der Verzögerungs- und Phasen-Vorverschiebungszone zu erlangen, wurden Färbungen gegen das Protein Period (PER), eines der zentralen Bestandteile der Inneren Uhr und gegen das Neuropeptid Pigment Dispersing Factor (PDF) angefertigt. Der zeitliche Verlauf im Auf- und Abbau des PER Proteins spiegelte die Phasenverschiebungen im Verhalten der Experimentalfliegen wider, wohingegen die Kontrollen weitestgehend unauffällig blieben. Zudem waren nur diejenigen Neurone von einer unmittelbaren Verschiebung der PER Protein Oszillation betroffen, die depolarisiert wurden, was auf einen schnellen Zell-autonomen Prozess schließen lässt. Die molekulare Verknüpfung, die zwischen der Depolarisation der Uhrneuronen und der Verschiebung der molekularen Uhr-Oszillation fungiert, ist immer noch unbekannt. Diesem Thema wurde nachgegangen, indem CREB (engl. cAMP responsive element binding protein) in den großen ventrolateralen Neuronen (l-LNv) quantifiziert wurde, da diese Neuronen unerwarteterweise und am wirksamsten auf die artifizielle Depolarisation mit einer starken PER-Akkumulation reagiert haben. In vorherigen Arbeiten wurde bereits angenommen, dass CREB in die circadiane Rhythmik involviert sei, indem es an Regulationssequenzen des period Gens bindet (Belvin et al., 1999) und somit dessen Transkription aktiviert. Wir konnten zeigen, dass die Menge an CREB Protein in den l-LNv circadian reguliert wird, da diese am Ende der subjektiven Nacht im Vergleich zum Ende des subjektiven Tages deutlich erhöht ist. Dieser Effekt konnte durch die artifizielle Depolarisation, aber unabhängig von deren Zeitpunkt, weiter verstärkt werden. Zudem deuten die Ergebnisse darauf hin, dass die Akkumulation des CREB Proteins mit dem Zeitpunkt des Anstiegs des PER Proteins in den l-LNv koinzidiert. Das lässt die Vermutung zu, dass CREB als molekulare Verbindung zwischen dem elektrischen neuronalen Status und der molekularen Uhr dienen kann. Zusammenfassend lässt sich sagen, dass die zeitlich begrenzte Depolarisation mithilfe von dTrpA1 signifikante Phasenverschiebungen im Verhalten wie auch auf der Proteinebene hervorrufen kann. Eine artifizielle Depolarisation zu Beginn der subjektiven Nacht verursacht Phasenverschiebungen nach hinten, wohingegen eine Depolarisation zum Ende der subjektiven Nacht Phasenverschiebungen nach vorne zur Folge hat. Die Aktivierung aller Uhrneurone brachte eine PRC hervor, die weitestgehend einer Licht-PRC gleicht. Die Depolarisierung der PDF+ Zellen hingegen ergab eine PRC, die sich insbesondere bezüglich der ausgeprägten Phasen-Vorverschiebungszone von einer Licht-vermittelten PRC unterscheidet. Die Innere Uhr scheint somit die Fähigkeit zu besitzen, exzitatorische und inhibitorische Eingänge in komplexer Art und Weise zu verarbeiten. Obwohl der in dieser Doktorarbeit gewählte experimentelle Ansatz hochgradig artifiziell ist, war es uns gerade durch den Ausschluss von Licht möglich, neue Schlussfolgerungen bezüglich der Kommunikation innerhalb des Netzwerks und dessen Lichtinformations-Eingänge zu ziehen. KW - Chronobiologie KW - Circadian clock KW - Tagesrhythmus KW - Taufliege Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137118 ER - TY - THES A1 - Schlichting, Matthias T1 - Light entrainment of the circadian clock: the importance of the visual system for adjusting Drosophila melanogaster´s activity pattern T1 - Lichtentrainment der inneren Uhr: Die Bedeutung des visuellen Systems für die Anpassung des Aktivitätsmusters von Drosophila melanogaster N2 - The change of day and night is one of the challenges all organisms are exposed to, as they have to adjust their physiology and behavior in an appropriate way. Therefore so called circadian clocks have evolved, which allow the organism to predict these cyclic changes of day and night. The underlying molecular mechanism is oscillating with its endogenous period of approximately 24 hours in constant conditions, but as soon as external stimuli, so called Zeitgebers, are present, the clocks adjust their period to exactly 24h, which is called entrainment. Studies in several species, including humans, animals and plants, showed that light is the most important Zeitgeber synchronizing physiology and behavior to the changes of day and night. Nevertheless also other stimuli, like changes in temperature, humidity or social interactions, are powerful Zeitgebers for entraining the clock. This thesis will focus on the question, how light influences the locomotor behavior of the fly in general, including a particular interest on the entrainment of the circadian clock. As a model organism Drosophila melanogaster was used. During the last years several research groups investigated the effect of light on the circadian clock and their results showed that several light input pathways to the clock contribute to wild-type behavior. Most of the studies focused on the photopigment Cryptochrome (CRY) which is expressed in about half of the 150 clock neurons in the fly. CRY is activated by light, degrades the clock protein Timeless (TIM) and hence entrains the clock to the light-dark (LD)-cycle resulting from changes of day and night. However, also flies lacking CRY are still able to entrain their clock mechanism as well as their activity-rest-rhythm to LD-cycles, clearly showing that the visual system of the fly also contributes to clock synchronization. The mechanism how light information from the visual system is transferred to the clock is so far still unknown. This is also true for so-called masking-effects which are changes in the behavior of the animal that are directly initiated by external stimuli and therefore independent of the circadian clock. These effects complement the behavior of the animals as they enable the fly to react quickly to changes in the environment even during the clock-controlled rest state. Both of these behavioral features were analyzed in more detail in this study. On the one hand, we investigated the influence of the compound eyes on the entrainment of the clock neurons and on the other hand, we tried to separate clock-controlled behavior from masking. To do so "nature-like" light conditions were simulated allowing the investigation of masking and entrainment within one experiment. The simulation of moonlight and twilight conditions caused significant changes in the locomotor behavior. Moonlit nights increased nocturnal activity levels and shifted the morning (M) and evening (E) activity bouts into the night. The opposite was true for the investigation of twilight, as the activity bouts were shifted into the day. The simulation of twilight and moonlight within the same experiment further showed that twilight appears to dominate over moonlight, which is in accordance to the assumption that twilight in nature is one of the key signals to synchronize the clock as the light intensity during early dawn rises similarly in every season. By investigating different mutants with impaired visual system we showed that the compound eyes are essential for the observed behavioral adaptations. The inner receptor cells (R7 and R8) are important for synchronizing the endogenous clock mechanism to the changes of day and night. In terms of masking, a complex interaction of all receptor cells seems to adjust the behavioral pattern, as only flies lacking photopigments in inner and outer receptor cells lacked all masking effects. However, not only the compound eyes seem to contribute to rhythmic activity in moonlit nights. CRY-mutant flies shift their E activity bout even more into the night than wild-type flies do. By applying Drosophila genetics we were able to narrow down this effect to only four CRY expressing clock neurons per hemisphere. This implies that the compound eyes and CRY in the clock neurons have antagonistic effects on the timing of the E activity bout. CRY advances activity into the day, whereas the compound eyes delay it. Therefore, wild-type behavior combines both effects and the two light inputs might enable the fly to time its activity to the appropriate time of day. But CRY expression is not restricted to the clock neurons as a previous study showed a rather broad distribution within the compound eyes. In order to investigate its function in the eyes we collaborated with Prof. Rodolfo Costa (University of Padova). In our first study we were able to show that CRY interacts with the phototransduction cascade and thereby influences visual behavior like phototaxis and optomotor response. Our second study showed that CRY in the eyes affects locomotor activity rhythms. It appears to contribute to light sensation without being a photopigment per se. Our results rather indicate that CRY keeps the components of the phototransduction cascade close to the cytoskeleton, as we identified a CRY-Actin interaction in vitro. It might therefore facilitate the transformation of light energy into electric signals. In a further collaboration with Prof. Orie Shafer (University of Michigan) we were able to shed light on the significance of the extraretinal Hofbauer-Buchner eyelet for clock synchronization. Excitation of the eyelet leads to Ca2+ and cAMP increases in specific clock neurons, consequently resulting in a shift of the flies´ rhythmic activity. Taken together, the experiments conducted in this thesis revealed new functions of different eye structures and CRY for fly behavior. We were furthermore able to show that masking complements the rhythmic behavior of the fly, which might help to adapt to natural conditions. N2 - Der Wechsel von Tag und Nacht stellt für viele Organismen eine große Herausforderung dar, da sie ihre Physiologie und auch das Verhalten den äußeren Gegebenheiten anpassen müssen. Um dieser Aufgabe gerecht zu werden, haben viele Organismen innere Uhren entwickelt, welche es ihnen erlauben, den Wechsel von Tag und Nacht vorherzusehen. Diesen inneren Uhren liegt ein molekularer Mechanismus zugrunde, welcher einen Rhythmus von etwa 24 Stunden generiert. Eine wichtige Eigenschaft dieser Uhren ist es, dass sie durch äußere Faktoren, so genannte Zeitgeber, an den Tag-Nacht-Wechsel angepasst werden können. Viele Studien an Mensch, Tier und Pflanze weisen darauf hin, dass Licht der wichtigste Zeitgeber ist, wobei auch Temperatur, Luftfeuchtigkeit oder soziale Interaktionen die innere Uhr an den Tag-Nacht-Wechsel anpassen können. Ziel dieser Arbeit ist es, die Auswirkung von Licht auf das Lauf-verhalten und die innere Uhr genauer zu beleuchten, wozu der Modellorganismus Drosophila melanogaster herangezogen wird. Zahlreiche Forschergruppen haben sich bereits mit der Synchronisation der inneren Uhr durch Licht beschäftigt, wobei klar hervorgeht, dass die Taufliege verschiedene Möglichkeiten hat, Lichtinformationen für die Synchronisation der Uhr zu verwenden. Der wohl am besten untersuchte Prozess ist die Synchronisation durch das Pigment Cryptochrom. Dieses Molekül ist in etwa der Hälfte der Uhrneuronen exprimiert und greift direkt in den molekularen Uhrmechanismus ein, wodurch dieser an den Tag-Nacht-Wechsel angepasst werden kann. Schaltet man jedoch das Gen für dieses Molekül aus so zeigt sich, dass die Tiere dennoch dazu in der Lage sind sich an den Licht-Dunkel-Wechsel anzupassen. Dies bedeutet, dass die visuellen Organe Informationen an die innere Uhr weiterleiten können, wobei der Mechanismus dafür noch nicht vollständig entschlüsselt werden konnte. Selbiges trifft auf sogenannte Maskierungseffekte zu: Maskierung beschreibt eine Veränderung des Verhaltensmusters, welches nicht durch die innere Uhr gesteuert, sondern direkt durch äußere Reize hervorgerufen wird. Diese direkten Effekte komplettieren das Verhalten der Tiere, da sie dadurch selbst zu endogen ungünstigen Zeiten adäquat auf äußere Reize reagieren können. In dieser Arbeit wird sich beider Phänomene angenommen: Zum einen soll die Bedeutung des visuellen Systems für die Synchronisation der inneren Uhr genauer untersucht, und zum anderen soll uhrgesteuertes Verhalten von Maskierung getrennt werden. Zu diesem Zweck wurden Lichtbedingungen simuliert, die den natürlichen ähnelten und die Untersuchung beider lichtabhängiger Effekte ermöglichten. Die Untersuchung von Dämmerung und Mondlicht zeigte deutlich, dass diese starke Veränderungen im Lauf-Verhalten hervorrufen. Die Simulation von Mondlicht bewirkte einen Anstieg der Nachtaktivität und ein Verschieben der Aktivitätsmaxima der Fliege in die Nacht. Das Gegenteil war bei Dämmerungssimulation zu beobachten, da die Tiere mehr Aktivität in den Tag legten. Bei gleichzeitiger Simulation von Mondlicht und Dämmerungsphasen zeigte sich, dass die Dämmerung ein stärkerer Zeitgeber ist als Mondlicht ist. Dieses Ergebnis geht einher mit der Annahme, dass die Dämmerung ein wichtiges Signal für die Synchronisation der inneren Uhr ist, da der Anstieg der Lichtintensität am frühen Morgen unabhängig von der Jahreszeit sehr ähnlich ist. Die Untersuchung von verschiedensten Mutanten konnte zudem zeigen, dass die Komplexaugen der Fliege von größter Bedeutung für die beobachteten Veränderungen im Verhaltensmuster und die Anpassung der inneren Uhr an "natürliche" Lichtbedingungen sind. Dabei stellte sich heraus, dass vor allem die inneren Rezeptorzellen wichtig für die Synchronisation der inneren Uhr und somit uhrgesteuerter Verhaltensänderungen sind. Für Maskierungseffekte scheint eine komplexe Interaktion von mehreren Rezeptorzellen für die Anpassung an Dämmerungs- und Mondlichtbedingungen vorzuliegen, da diese nur bei Mehrfachmutationen verschiedener Rhodopsine, den lichtabsorbierenden Molekülen der Fliege, verschwanden. Jedoch scheinen nicht nur die Komplexaugen das rhythmische Verhalten in Mondlichtnächten zu beeinflussen. Wird das Gen für Cryptochrom, dem Photorezeptor der inneren Uhr, ausgeschaltet, verschieben die Tiere ihre Abendaktivität noch stärker in die Nacht als es bereits beim Wildtyp der Fall ist. Durch verschiedene genetische Manipulationen konnten wir den Grund dieses Verhaltens auf die Expression von Cryptochrom in nur vier Uhrneuronen pro Hemisphäre zurückverfolgen. Zugleich zeigten unsere Ergebnisse, dass die Komplexaugen und Cryptochrom entgegengesetzte Wirkung auf das Timing der Abendaktivität haben. Während die Komplexaugen die Abendaktivität in die Nacht hinein schieben, bewirkt Cryptochrom, dass die Aktivität noch während des Tages stattfindet. Dies bedeutet, dass das wildtypische Verhalten eine Mischung aus beiden Lichteingängen ist und sich die Tiere somit ideal an die äußeren Gegebenheiten anpassen können. Cryptochrom wird jedoch nicht nur in den Uhrneuronen, sondern unter anderem auch in den Komplexaugen der Tiere exprimiert. Um die Funktion in den Augen genauer zu untersuchen, konnten wir in Kollaboration mit Prof. Rodolfo Costa (University of Padova) zunächst zeigen, dass CRY mit der Phototransduktionskaskade über das Protein INAD interagiert und dadurch visuelles Verhalten, wie zum Beispiel Phototaxis oder die optomotorische Antwort, beeinflussen kann. In weiteren Experimenten konnten wir zudem zeigen, dass CRY in den Augen die lokomotorische Aktivität der Fliegen beeinflusst. Dabei trägt es zur Wahrnehmung von Licht bei, ohne jedoch per se ein Photopigment zu sein. Vielmehr scheint CRY die Phototransduktion dahingehend zu verändern, dass es den Phototransduktionskomplex an das Cytoskelett innerhalb der Rhabdomere bindet und somit die Umwandlung von Lichtenergie in elektrische Signale erleichtert. Zusammen mit Prof. Orie Shafer (University of Michigan) ist es uns zudem gelungen, die Rolle des extraretinalen Hofbauer-Buchner-Äugleins für die Synchronisation der Uhr genauer zu beleuchten. Die Anregung des Äugleins führte dabei zu einem Anstieg der Ca2+ und cAMP Mengen in bestimmten Uhrneuronen und dies bewirkte eine Phasenverschiebung des Verhaltens der Taufliege. Somit konnten in dieser Arbeit neue Erkenntnisse über die Funktionen von Cryptochrom und verschiedener Augenstrukturen für das Verhalten der Fliege gewonnen werden. Dabei konnten die Bedeutungen der inneren Uhr sowie von Maskierungseffekten für das Verhalten der Tiere in der Natur herausgearbeitet werden. KW - Taufliege KW - Moonlight KW - Rhodopsin KW - Tagesrhythmus KW - Twilight KW - Compound eyes KW - Biologische Uhr KW - Zeitgeber KW - Licht KW - Cryptochrom KW - Drosophila KW - Circadian Rhythms Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114457 ER - TY - THES A1 - Luibl [née Hermann], Christiane T1 - The role of the neuropeptides NPF, sNPF, ITP and PDF in the circadian clock of Drosophila melanogaster T1 - Die Rolle der Neuropeptide NPF, sNPF, ITP und PDF in der circadianen Uhr von Drosophila melanogaster N2 - Organisms have evolved endogenous clocks which allow them to organize their behavior, metabolism and physiology according to the periodically changing environmental conditions on earth. Biological rhythms that are synchronized to daily changes in environment are governed by the so-called circadian clock. Since decades, chronobiologists have been investigating circadian clocks in various model organisms including the fruitfly Drosophila melanogaster, which was used in the present thesis. Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the lateral and dorsal protocerebrum, which are characterized by their position, morphology and neurochemistry. Some of these neurons had been previously shown to contain either one or several neuropeptides, which are thought to be the main signaling molecules used by the clock. The best investigated of these neuropeptides is the Pigment Dispersing Factor (PDF), which had been shown to constitute a synchronizing signal between clock neurons as well as an output factor of the clock. In collaboration with various coworkers, I investigated the roles of three other clock expressed neuropeptides for the generation of behavioral rhythms and the partly published, partly unpublished data are presented in this thesis. Thereby, I focused on the Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). We show that part of the neuropeptide composition within the clock network seems to be conserved among different Drosophila species. However, the PDF expression pattern in certain neurons varied in species deriving from lower latitudes compared to higher latitudes. Together with findings on the behavioral level provided by other people, these data suggest that different species may have altered certain properties of their clocks - like the neuropeptide expression in certain neurons - in order to adapt their behavior to different habitats. We then investigated locomotor rhythms in Drosophila melanogaster flies, in which neuropeptide circuits were genetically manipulated either by cell ablation or RNA interference (RNAi). We found that none of the investigated neuropeptides seems to be of equal importance for circadian locomotor rhythms as PDF. PDF had been previously shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for the generation of morning (M) activity and for the right phasing of the evening (E) activity in entrained conditions. We now demonstrate that NPF and ITP seem to promote E activity in entrained conditions, but are clearly not the only factors doing so. In addition, ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute weak period shortening components in DD, thereby opposing the effect of PDF. However, neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining rhythmicity in DD. It had been previously suggested that PDF is released rhythmically from the dorsal projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be important to maintain rhythmic behavior in DD, since constantly high levels of PDF and ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory way on few clock neurons, including some that are also activated by PDF, suggesting that it acts as signaling molecule within the clock network and has opposing effects to PDF. NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting that it might rather be used as a clock output factor. We were not able to apply the same live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but overexpression of ITP with various driver lines showed that the peptide most likely acts mainly in clock output pathways rather than inter-clock neuron communication. Taking together, I conclude that all investigated peptides contribute to the control of locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in most aspects dominated by the actions of PDF and rather only fine-tuned or complemented by the other peptides. I assume that there is a high complexity in spatial and temporal action of the different neuropeptides in order to ensure correct signal processing within the clock network as well as clock output. N2 - Die meisten Organismen haben endogene Uhren entwickelt, mit deren Hilfe sie ihre Verhaltensweisen, ihren Metabolismus und auch ihre Physiologie an die periodisch wechselnden Umweltbedingungen auf unserer Erde anpassen können. Die sogenannten circadianen Uhren steuern dabei biologische Rhythmen, die an täglich wiederkehrende Umweltfaktoren angepasst sind. Schon seit Jahrzehnten wurden diese circadianen Uhren von Chronobiologen in verschiedensten Modellorganismen untersucht. Zu diesen gehört auch die Taufliege Drosophila melanogaster, welche im Rahmen dieser Doktorarbeit Verwendung fand. Anatomisch besteht die circadiane Uhr der Taufliege aus etwa 150 sogenannten Uhrneuronen, die sich im dorsalen und lateralen Protocerebrum der Fliege befinden. Diese können anhand ihrer Position im Gehirn, ihrer Morphologie als auch ihrer neurochemischen Eigenschaften charakterisiert werden. Es wurde bereits in früheren Arbeiten gezeigt, dass einige dieser Uhrneuronen jeweils ein oder mehrere Neuropeptide exprimieren, welche mit großer Wahrscheinlichkeit die wichtigsten Signalmoleküle der Uhr darstellen. Dabei ist der „Pigment Dispersing Factor“ (PDF) wohl das Neuropeptid, welches bisher in Bezug auf seine Funktion in der Uhr die größte Aufmerksamkeit fand. Es ist daher auch das Neuropeptid, das bei Weitem am besten untersucht ist. So wurde bereits gezeigt, dass PDF die Oszillationen der Uhrneuronen untereinander synchronisiert und auch in Ausgangssignalwegen der Uhr zu nachgeschalteten Gehirnregionen eine Rolle spielt. In Zusammenarbeit mit verschiedenen Kollegen, wurde im Rahmen dieser Doktorarbeit untersucht, welche Rolle drei andere Neuropeptide, welche in den Uhrneuronen exprimiert werden, in der Generierung von Verhaltensrhythmen spielen. Der Fokus lag dabei auf der Untersuchung des Neuropeptids F (NPF) des short Neuropeptids F (sNPF) und des Ion Transport Peptids (ITP). Wir konnten für manche dieser Peptide zeigen, dass ihre Verwendung im Uhrnetzwerk unterschiedlicher Drosophila-Arten konserviert zu sein scheint. Im Falle von PDF zeigten sich jedoch Unterschiede in der zellspezifischen Expression in Arten aus südlichen Breitengraden im Vergleich zu Arten aus nördlichen Breitengraden. Zusammen mit ergänzenden Verhaltensdaten anderer Arbeitsgruppen, gehen wir davon aus, dass unterschiedliche Arten bestimmte Eigenschaften ihrer Uhr – wie etwa die Neuropeptid-Expression in bestimmten Zellen – verändert haben, um ihr Verhalten bestmöglich an ihr jeweiliges Habitat anzupassen. Des Weiteren wurde in dieser Arbeit die Aktivitätsrhythmik in Fliegen untersucht, in welchen gezielt bestimmte Neuropeptid-Systeme auf genetischem Wege - entweder durch Zellablation oder RNA-Interferenz (RNAi) - manipuliert wurden. Wir konnten zeigen, dass wohl keines der untersuchten Peptide eine ähnlich große Rolle für die Aktivitätsrhythmik spielt wie PDF. Aus früheren Arbeiten geht hervor, dass PDF sowohl für die Aufrechterhaltung eines Rhythmus in konstanter Dunkelheit (DD), als auch für die Generierung der Morgenaktivität und für die richtige Phasenlage der Abendaktivität in Licht-Dunkel Zyklen (LD) essentiell ist. Ergebnisse der vorliegenden Arbeit zeigen nun, dass NPF und ITP die Abendaktivität in LD fördern, dass sie jedoch nicht die einzigen Faktoren sind, die dies bewerkstelligen. ITP scheint außerdem Aktivität während der Nacht zu hemmen. Des Weiteren stellen ITP und möglicherweise auch sNPF eine schwache Perioden verkürzende Komponente in DD dar, ganz im Gegensatz zu PDF, welches eine Perioden verlängernde Wirkung besitzt. Jedoch scheinen weder ITP, NPF noch sNPF für die generelle Aufrechterhaltung eines Rhythmus in DD nötig zu sein. Vorhergehende Arbeiten wiesen bereits darauf hin, dass PDF wahrscheinlich rhythmisch an den dorsalen Nervenendigungen ausgeschüttet wird. Unsere jetzigen Ergebnisse zeigen desweiteren eine Oszillation in der ITP-Immunfärbung in den dorsalen Projektionen der ITP+ Uhrneuronen in LD, was auch auf eine rhythmische Ausschüttung dieses Peptids schließen lässt. Die rhythmische Freisetzung beider Peptide scheint für die Aufrechterhaltung eines Verhaltensrhythmus in DD wichtig zu sein, da eine konstant hohe Menge an ITP und PDF im dorsalen Gehirn den Freilauf-Rhythmus störten. Die live-Imaging Experimente dieser Arbeit zeigten, dass sNPF auf manche Uhrneuronen inhibitorisch wirkt – auch auf einige, die durch PDF aktiviert werden können. sNPF könnte also als Signalmolekül innerhalb des Uhrnetzwerkes fungieren. Auch NPF führte zu inhibitorischen Zellantworten, jedoch waren diese äußerst schwach und betrafen nur wenige Uhrneuronen, was darauf schließen lässt, dass dieses Peptid wahrscheinlich am Signalausgang der Uhr beteiligt ist. Es war uns bisher nicht möglich dieselben live-Imaging Untersuchungen auch für ITP durchzuführen, jedoch zeigten Überexpressionsstudien mit verschiedenen Treiberlinien, dass auch ITP mit großer Wahrscheinlichkeit im Signalausgang der Uhr fungiert. Zusammenfassend lässt sich sagen, dass alle hier untersuchten Neuropeptide an der Kontrolle der rhythmischen Lokomotoraktivität von Drosophila melanogaster mitwirken. Dabei ist PDF eindeutig der dominierende Faktor, während die anderen Neuropeptide die Wirkung von PDF eher feinregulieren oder komplementieren. Aus den Daten kann geschlossen werden, dass die örtliche und zeitliche Funktionsweise dieser verschiedenen Peptide sehr komplex ist, um sowohl die Prozessierung von Signalen innerhalb des Uhrnetzwerkes als auch in den weitgehend noch unbekannten Ausgangswegen der Uhr zu gewährleisten. KW - Taufliege KW - Biologische Uhr KW - Neuropeptide KW - Innere Uhr KW - Drosophila KW - Circadian Rhythms Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93796 ER - TY - THES A1 - Ehmann, Nadine T1 - Linking the active zone ultrastructure to function in Drosophila T1 - Struktur-Funktions-Beziehungen an der aktiven Zone in Drosophila N2 - Accurate information transfer between neurons governs proper brain function. At chemical synapses, communication is mediated via neurotransmitter release from specialized presynaptic intercellular contact sites, so called active zones. Their molecular composition constitutes a precisely arranged framework that sets the stage for synaptic communication. Active zones contain a variety of proteins that deliver the speed, accuracy and plasticity inherent to neurotransmission. Though, how the molecular arrangement of these proteins influences active zone output is still ambiguous. Elucidating the nanoscopic organization of AZs has been hindered by the diffraction-limited resolution of conventional light microscopy, which is insufficient to resolve the active zone architecture on the nanometer scale. Recently, super-resolution techniques entered the field of neuroscience, which yield the capacity to bridge the gap in resolution between light and electron microscopy without losing molecular specificity. Here, localization microscopy methods are of special interest, as they can potentially deliver quantitative information about molecular distributions, even giving absolute numbers of proteins present within cellular nanodomains. This thesis puts forward an approach based on conventional immunohistochemistry to quantify endogenous protein organizations in situ by employing direct stochastic optical reconstruction microscopy (dSTORM). Focussing on Bruchpilot (Brp) as a major component of Drosophila active zones, the results show that the cytomatrix at the active zone is composed of units, which comprise on average ~137 Brp molecules, most of which are arranged in approximately 15 heptameric clusters. To test for a quantitative relationship between active zone ultrastructure and synaptic output, Drosophila mutants and electrophysiology were employed. The findings indicate that the precise spatial arrangement of Brp reflects properties of short-term plasticity and distinguishes distinct mechanistic causes of synaptic depression. Moreover, functional diversification could be connected to a heretofore unrecognized ultrastructural gradient along a Drosophila motor neuron. N2 - Kommunikation zwischen Nervenzellen ist von grundlegender Bedeutung für die Hirnfunktion. An chemischen Synapsen findet diese an hoch spezialisierten interzellulären Kontaktstellen statt, den aktiven Zonen, welche die Voraussetzung für präzise Neurotransmission schaffen und somit die synaptische Kommunikation gewährleisten. In aktiven Zonen befindet sich eine Vielzahl von Proteinen dicht gepackt, die Geschwindigkeit, Genauigkeit und Plastizität der Signaltransduktion vermitteln. Bisher ist es jedoch unklar, in welcher Weise die molekularen Organisationsprinzipien dieser Proteine die Funktion der aktiven Zone beeinflussen. Teilweise ist dies dem Auflösungsvermögen konventioneller Lichtmikroskopie geschuldet, das nicht ausreicht um die Architektur der aktiven Zone im Nanometer Bereich aufzuklären. Unlängst jedoch haben neue Methoden der hochaufgelösten Fluoreszenzmikroskopie ihren Weg in die Neurowissenschaften gefunden. Diese sind in der Lage die Lücke zwischen optischer Lichtmikroskopie und Elektronenmikroskopie zu schließen, ohne die Identität der Proteinspezies aus den Augen zu verlieren. Besonderes Interesse kommt hierbei sogenannten Lokalisationsmikroskopie Techniken zu. Diese können neben der Darstellung molekularer Organisationen im Idealfall sogar quantitative Informationen über die absolute Anzahl bestimmter Moleküle in subzellulären Bereichen liefern. In der vorliegenden Arbeit wurde eine Methode entwickelt, die auf klassischer Immunohistochemie beruht und dSTORM (direct stochastic optical reconstruction microscopy) nutzt, um die endogene Proteinorganisation in situ zu quantifizieren. Fokussierend auf Brp (Bruchpilot), einem Protein an der aktiven Zone von Drosophila melanogaster, zeigen die Ergebnisse, dass die Zytomatrix an der aktiven Zone modular aufgebaut ist, wobei jedes Modul ~137 Brp Moleküle umfasst. Diese sind zum Großteil in etwa 15 Gruppen mit je 7 Untereinheiten angeordnet. Um auf einen quantitativen Zusammenhang zwischen der Ultrastruktur der aktiven Zone und ihrer Funktion zu schließen, wurden Drosophila Mutanten eingesetzt und mittels Elektrophysiologie funktionell untersucht. Die Ergebnisse veranschaulichen, dass sich spezifische Eigenschaften von Kurzzeitplastizität in der präzisen Anordnung von Brp widerspiegeln, was Rückschlüsse auf verschiedene Ursprünge synaptischer Depression zulässt. Darüber hinaus beschrieben dSTORM Experimente erstmals, dass ein funktioneller Gradient entlang des Motoneurons mit der graduellen Veränderung der Anzahl von Bruchpilotmolekülen pro aktive Zone korreliert. KW - Taufliege KW - Elektrophysiologie KW - Fluoreszenzmikroskopie KW - Synapse KW - Drosophila KW - active zone KW - structure-function relationships KW - super-resolution microscopy KW - electrophysiology KW - Synapses KW - Microscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118186 ER - TY - THES A1 - Yang, Zhenghong T1 - A systematic study of learned helplessness in Drosophila melanogaster T1 - Eine systematische Untersuchung der erlernten Hilflosigkeit in Drosophila melanogaster N2 - The learned helplessness phenomenon is a specific animal behavior induced by prior exposure to uncontrollable aversive stimuli. It was first found by Seligman and Maier (1967) in dogs and then has been reported in many other species, e.g. in rats (Vollmayr and Henn, 2001), in goldfishes (Padilla, 1970), in cockroaches (Brown, 1988) and also in fruit flies (Brown, 1996; Bertolucci, 2008). However, the learned helplessness effect in fruit flies (Drosophila melanogaster) has not been studied in detail. Thus, in this doctoral study, we investigated systematically learned helplessness behavior of Drosophila for the first time. Three groups of flies were tested in heatbox. Control group was in the chambers experiencing constant, mild temperature. Second group, master flies were punished in their chambers by being heated if they stopped walking for 0.9s. The heat pulses ended as soon as they resumed walking again. A third group, the yoked fly, was in their chambers at the same time. However, their behavior didn’t affect anything: yoked flies were heated whenever master flies did, with same timing and durations. After certain amount of heating events, yoked flies associated their own behavior with the uncontrollability of the environment. They suppressed their innate responses such as reducing their walking time and walking speed; making longer escape latencies and less turning around behavior under heat pulses. Even after the conditioning phase, yoked flies showed lower activity level than master and control flies. Interestingly, we have also observed sex dimorphisms in flies. Male flies expressed learned helplessness not like female flies. Differences between master and yoked flies were smaller in male than in female flies. Another interesting finding was that prolonged or even repetition of training phases didn’t enhance learned helplessness effect in flies. Furthermore, we investigated serotonergic and dopaminergic nervous systems in learned helplessness. Using genetic and pharmacological manipulations, we altered the levels of serotonin and dopamine in flies’ central nervous system. Female flies with reduced serotonin concentration didn’t show helpless behavior, while the learned helplessness effect in male flies seems not to be affected by a reduction of serotonin. Flies with lower dopamine level do not display the learned helplessness effect in the test phase, suggesting that with low dopamine the motivational change in learned helplessness in Drosophila may decline faster than with a normal dopamine level. N2 - Das „learned helplessness“ Phänomen ist ein spezifisches Verhalten nach vorheriger Exposition von unkontrollierbaren aversiven Stimuli induziert. Es wurde zuerst von Seligman und Maier (1967) bei Hunden und dann in vielen anderen Tierarten berichtet, z.B. in Ratten (Vollmayr und Henn, 2001), in Goldfische (Padilla , 1970), in Kakerlaken (Brown, 1988) sowie in Fruchtfliegen (Brown, 1996; Bertolucci, 2008). Allerdings wurde das learned helplessness Phänomen in Fruchtfliegen (Drosophila melanogaster) noch nicht genau erforscht. Somit wird in dieser Doktorarbeit haben wir erlernten learned helplessness von Drosophila zum ersten Mal systematisch untersucht. Drei Gruppen von Fliegen wurden in Heatbox getestet. Die Kontrollgruppe war in den Kammern erlebter konstant milder Temperatur. Die zweite Master Gruppe wurde in ihren Kammern erhitzt, wenn sie blieb stehen für 0,9 s. Die Hitze endete, sobald sie sich wieder bewegten. Eine dritte Gruppe, die Yoked Fliegen, war in ihren Kammern gleichzeitig. Doch ihr Verhalten keine Auswirkungen auf die Hitze hatte: Yoked Fliegen wurden erhitzt, wenn Master Fliegen wurden, mit gleichen Zeitpunkt und Dauer. Nach gewissen Hitze Veranstaltungen, Yoked Fliegen assoziierten ihre eigenen Verhalten mit der Unkontrollierbarkeit der Umwelt. Sie unterdrückte ihre angeborene Reaktionen, wie die Verringerung ihrer Laufaktivität; verlängerte mehr Fluchtlatenzzeiten und weniger Umdrehen Verhalten unter Hitzen. Auch nach der Konditionierungsphase zeigte Yoked Fliegen niedrigeren Aktivität als Master und Kontrolle Fliegen. Interessanterweise haben wir auch Sex Dimorphismus in Fliegen beobachtet. Male Fliegen haben learned helplessness nicht wie weibliche Fliegen ausgedrückt. Die Unterschiede zwischen den Master und Yoked Fliegen waren bei männlichen kleiner als bei weiblichen Fliegen. Ein weiteres interessantes Ergebnis war, dass längere oder sogar wiederholte Trainingsphasen die lerned helplessness Wirkung bei Fliegen nicht verstärken könnten. Darüber hinaus haben wir serotonergen und dopaminerge Nervensysteme in learned helplessness erforscht. Mit genetischen und pharmakologischen Manipulationen, haben wir das Niveau von Serotonin und Dopamin im zentralen Nervensystem der Fliegen geändert. Weibliche Fliegen mit reduzierten Serotoninkonzentration zeigten kein hilflos Verhalten, während die learned helplessness Wirkung in männlichen Fliegen schien nicht durch eine Reduktion von Serotonin beeinflusst zu werden. Fliegen mit niedrigerer Dopamin Konzentration zeigten keine learned helplessness Wirkung in der Testphase an, was darauf hindeutet, dass mit niedrigen Dopamin die Motivationsänderung in learned helplessness in Drosophila kann schneller als mit einem normalen Dopaminspiegel sinken. KW - Taufliege KW - Gelernte Hilflosigkeit KW - Drosophila KW - learned helplessness KW - depression KW - learning and memory Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112424 ER - TY - THES A1 - Blanco Redondo, Beatriz T1 - Studies of synapsin phosphorylation and characterization of monoclonal antibodies from the Würzburg Hybridoma Library in Drosophila melanogaster T1 - Untersuchungen der Phosphorylierung von Synapsin und Charakterisierung monoklonaler Antikörper der Würzburg Hybridoma Library in Drosophila melanogaster N2 - Synapsins are conserved synapse-associated hosphoproteins involved in the fine regulation of neurotransmitter release. The aim of the present project is to study the phosphorylation of synapsins and the distribution of phospho-synapsin in the brain of Drosophila melanogaster. Three antibodies served as important tools in this work, a monoclonal antibody (3C11/α-Syn) that recognizes all known synapsin isoforms and two antisera against phosphorylated synapsin peptides (antiserum PSyn(S6) against phospho-serine 6 and antiserum PSyn(S464) against phospho-serine 464). These antisera were recently generated in collaboration with Bertram Gerber and Eurogentec. ... N2 - Synapsine sind konservierte, Synapsen-assoziierte Phosphoproteine, die an der Feinregulation der Neurotransmitterfreisetzung beteiligt sind. Das Ziel des Projektes ist, die Phosphorylierung der Synapsine und die Verteilung des Phospho-Synapsins im Gehirn von Drosophila melanogaster zu untersuchen. Aus diesem Grunde wurden drei bestimmte Antikörper in dieser Arbeit verwendet: Ein monoklonaler Antikörper (3C11/α-Syn), der alle bekannten Isoformen von Synapsin erkennt, und zwei Antiseren gegen phosphorylierte Synapsinpeptide (das Antiserum PSyn(S6) gegen Phosphoserin 6 und das Antiserum PSyn(S464) gegen Phosphoserin 464). Diese Antiseren wurden unlängst in Zusammenarbeit mit Bertram Gerber und Eurogentec hergestellt. KW - Synapsine KW - neuroscience KW - Taufliege KW - Monoklonaler Antikörper KW - Neurowissenschaften Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93766 ER - TY - THES A1 - Tyagi, Anu T1 - Role of SWI/SNF in regulating pre-mRNA processing in Drosophila melanogaster T1 - Funktion von SWI/SNF in der Regulation der prämRNA-Prozessierung in Drosophila melanogaster N2 - ATP dependent chromatin remodeling complexes are multifactorial complexes that utilize the energy of ATP to rearrange the chromatin structure. The changes in chromatin structure lead to either increased or decreased DNA accessibility. SWI/SNF is one of such complex. The SWI/SNF complex is involved in both transcription activation and transcription repression. The ATPase subunit of SWI/SNF is called SWI2/SNF2 in yeast and Brahma, Brm, in Drosophila melanogaster. In mammals there are two paralogs of the ATPase subunit, Brm and Brg1. Recent studies have shown that the human Brm is involved in the regulation of alternative splicing. The aim of this study was to investigate the role of Brm in pre-mRNA processing. The model systems used were Chironomus tentans, well suited for in situ studies and D. melanogaster, known for its full genome information. Immunofluorescent staining of the polytene chromosome indicated that Brm protein of C. tentans, ctBrm, is associated with several gene loci including the Balbiani ring (BR) puffs. Mapping the distribution of ctBrm along the BR genes by both immuno-electron microscopy and chromatin immunoprecipitation showed that ctBrm is widely distributed along the BR genes. The results also show that a fraction of ctBrm is associated with the nascent BR pre-mRNP. Biochemical fractionation experiments confirmed the association of Brm with the RNP fractions, not only in C. tentans but also in D. melanogaster and in HeLa cells. Microarray hybridization experiments performed on S2 cells depleted of either dBrm or other SWI/SNF subunits show that Brm affects alternative splicing and 3´ end formation. These results indicated that BRM affects pre-mRNA processing as a component of SWI/SNF complexes. 1 N2 - ATP abhängige Chromatin Remodelling Komplexe bestehen aus diversen Faktoren, welche die bei der Umsetzung von ATP freiwerdende Energie dazu nutzen, die Chromatinstruktur neu zu ordnen. Diese Veränderungen führen zu einer Zu- bzw. Abnahme in der Zugänglichkeit der DNA. Ein Beispiel dafür ist der SWI/SNF-Komplex, der sowohl in die Aktivierung als auch die Inhibierung der Transkription involviert ist. Die ATPase-Untereinheit von SWI/SNF heißt in Hefe SWI2/SNF2 und in Drosophila melanogaster Brahma (Brm). Im Gegensatz dazu besitzen Säuger zwei Paraloge der ATPase-Einheit, nämlich Brm und Brg1. Neueste Studien haben gezeigt, dass das humane Brm in der Regulation des Alternativen Spleißen beteiligt ist. Ziel dieser Arbeit ist es, die Rolle von Brm in der prä-mRNA-Prozessierung zu untersuchen. Als Versuchssysteme wurden Chironomus tentans und D. melanogaster herangezogen. Dabei eignete sich C. tentans vor allem für die in situ Studien während bei D. melanogaster das vollständig sequenzierte Genom von Vorteil war. Immunfluoreszenzfärbungen von Polytän-Chromosomen zeigen eine Assoziation von Brm von C. tentans, ctBrm; mit unterschiedlichen Genloci, einschließlich der Balbiani-Ringe (BR). Mit Hilfe von Immun-Elektronenmikroskopie und Chromatin-Immunpräzipitation (ChIP) wird die Verteilung von ctBrm entlang der BR-Gene untersucht. Dabei zeigt ctBrm eine weite Streuung. Die Ergebnisse lassen außerdem darauf schließen, dass ein Teil des ctBrm-Proteins mit naszierenden BRprä- mRNPs interagiert. Biochemische Fraktionierungs-experimente bestätigen die Assoziation von Brm mit RNP-Fraktionen nicht nur in C. tentans, sondern auch in D. melanogaster und in HeLa-Zellen. Microarray-Untersuchungen in S2-Zellen, in denen entweder dBrm oder eine andere Untereinheit von SWI/SNF depletiert war, zeigen, dass BRM als eine Komponente des SWI/SNF-Komplexes sowohl Alternatives Spleißen und die Formierung des 3´ Endes, als auch die prä-mRNA-Prozessierung beeinflusst. KW - Taufliege KW - Messenger-RNS KW - Prozessierung KW - SWI/SNF KW - mRNA processing KW - SWI/SNF KW - mRNA processing Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72253 ER - TY - THES A1 - Eschbach, Claire T1 - Classical and operant learning in the larvae of Drosophila melanogaster T1 - Klassiches und operantes Lernen bei Larven der Drosophila melanogaster N2 - In dieser Doktorarbeit studiere ich einige psychologische Aspekte im Verhalten der Drosophila, insbesondere von Drosophila Larven. Nach einer Einleitung, in der ich den wissenschaftlichen Kontext darstelle und die Mechanismen der olfaktorischen Wahrnehmung sowie des klassichen und operanten Lernens beschreibe, stelle ich die verschiedenen Experimente meiner Doktorarbeit vor. Wahrnehmung Das zweite Kapitel behandelt die Art, in der adulte Drosophila zwischen Einzeldüften und Duftgemischen generaliseren. Ich habe gefunden, daß die Fliegen eine Mischung aus zwei Düften als gleich verschieden von ihren beiden Elementen wahrnehmen; und daß die Intensität sowie die chemisch-physikalische Natur der Elemente das Ausmass der Generalisierung zwischen der Mischung und ihren beiden Elementen beeinflusst. Diese Entdeckungen sollten für die weitere Forschung anregend sein, wie zum Beispiel zum functional imaging. Gedächtnis Das dritte Kapitel stellt die Etablierung eines neuen Protokolls zur klassischen Konditionierung bei Drosophila Larven dar. Es handelt sich um Experimente, bei denen ein Duft mit einer mechanischen Störung als Strafreiz verknüpft wird. Das Protokoll wird einen Vergleich zwischen zwei Arten vom aversiven Gedächtnissen (Geschmack vs. mechanische Störung als Strafreize) ermöglichen, einschliesslich eines Vergleiches ihrer neurogenetischen Grundlagen; zudem kann nun geforscht werden, ob die jeweiligen Gedächtnisse spezifisch für die Art des verwendeten Strafreizes sind. Selbstgestaltung Das vierte Kapitel umfasst unsere Versuche, operantes Gedächtnis bei Drosophila Larven zu beobachten. Zumindest für die unmittelbar ersten Momente des Tests konnte ich zeigen, dass die Larven ihr Verhalten entsprechend dem Training ausrichten. Dieses Gedächtnis scheint jedoch im Laufe des Tests schnell zu verschwinden. Es ist daher geraten, diese Ergebnisse über operantes Lernen zu wiederholen, eventuell das experimentelle Protokoll zu verbessern, um so eine systematische Analyse der Bedingungen und Mechanismen für das operante Lernen bei der Drosophila Larve zu erlauben. Im fünften Kapitel verwende ich die im Rahmen des vierten Kapitels entwickelten Methoden für eine Analyse der Fortbewegung der Larven. Ich habe insbesondere die Wirkung des pflanzlichen ‚cognitive enhancers’ Rhodiola rosea untersucht, sowie die Auswirkungen von Mutationen in den Genen, welche für Synapsin und SAP47 kodieren; schliesslich habe ich getestet, ob die Geschmacksqualität der Testsituation lokomotorische Parameter verändert. Diese Dissertation erbringt also eine Reihe neuer Aspekte zur Psychologie der Drosophila und wird hoffentlich in diesem Bereich der Forschung neue Wege öffnen. N2 - In this thesis I studied psychological aspects in the behaviour of Drosophila, and especially Drosophila larvae. After an introduction where I present the general scientific context and describe the mechanisms of olfactory perception as well as of classical and operant conditioning, I present the different experiments that I realised during my PhD. Perception The second chapter deals with the way adult Drosophila generalise between single odours and binary mixtures of odours. I found that flies perceive a mixture of two odours as equally similar to the two elements composing it; and that the intensity as well as the physico-chemical nature of the elements composing a mixture affect the degree of generalisation between this mixture and one of its elements. These findings now call for further investigation on the physiological level, using functional imaging. Memory The third chapter presents a series of experiments in Drosophila larvae in order to define some characteristics of a new protocol for classical aversive learning which involves associating odours with mechanical disturbance as a punishment. The protocol and the first results should open new doors for the study of classical conditioning in Drosophila larvae, by allowing the comparison between two types of aversive memory (gustatory vs. mechanical reinforcement), including a comparison of their neurogenetic bases. It will also allow enquiries into the question whether these respective memories are specific for the kind of reinforcer used. Agency The fourth chapter documents our attempts to establish operant memory in Drosophila larvae. By analysing the first moments of the test, I could reveal that the larvae modified their behaviour according to their previous operant training. However, this memory seems to be quickly extinguished during the course of the test. We now aim at repeating these results and improving the protocol, in order to be able to systematically study the mechanisms allowing and underlying operant learning in Drosophila larvae. In the fifth chapter, I use the methods developed in chapter four for an analysis of larval locomotion. I determine whether larval locomotion in terms of speed or angular speed is affected by a treatment with the “cognitive enhancer” Rhodiola rosea, or by mutations in the Synapsin or SAP47 genes which are involved in the formation of olfactory memory. I also characterize the modifications induced by the presence of gustatory stimuli in the substrate on which the larvae are crawling. This thesis thus brings new elements to the current knowledge of Drosophila KW - Lernen KW - Taufliege KW - Neurobiologie KW - Drosophila KW - learning KW - Drosophila KW - neurobiology KW - behaviour Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70583 ER - TY - THES A1 - Sareen, Preeti T1 - Visual attention in Drosophila melanogaster T1 - Visuelle Aufmerksamkeit bei Drosophila melanogaster N2 - There is such vast amount of visual information in our surroundings at any time that filtering out the important information for further processing is a basic requirement for any visual system. This is accomplished by deploying attention to focus on one source of sensory inputs to the exclusion of others (Luck and Mangun 2009). Attention has been studied extensively in humans and non human primates (NHPs). In Drosophila, visual attention was first demonstrated in 1980 (Wolf and Heisenberg 1980) but this field remained largely unexplored until recently. Lately, however, studies have emerged that hypothesize the role of attention in several behaviors but do not specify the characteristic properties of attention. So, the aim of this research was to characterize the phenomenon of visual attention in wild-type Drosophila, including both externally cued and covert attention using tethered flight at a torque meter. Development of systematic quantifiable behavioral tests was a key aspect for this which was not only important for analyzing the behavior of a population of wild-type flies but also for comparing the wild-type flies with mutant flies. The latter would help understand the molecular, genetic, and neuronal bases of attention. Since Drosophila provides handy genetic tools, a model of attention in Drosophila will serve to the greater questions about the neuronal circuitry and mechanisms involved which might be analogous to those in primates. Such a model might later be used in research involving disorders of attention. Attention can be guided to a certain location in the visual field by the use of external cues. Here, using visual cues the attention of the fly was directed to one or the other of the two visual half-fields. A simple yet robust paradigm was designed with which the results were easily quantifiable. This paradigm helped discover several interesting properties of the cued attention, the most substantial one being that this kind of external guidance of attention is restricted to the lower part of the fly’s visual field. The guiding cue had an after-effect, i.e. it could occur at least up to 2 seconds before the test and still bias it. The cue could also be spatially separated from the test by at least 20° and yet attract the attention although the extent of the focus of attention (FoA) was smaller than one lower visual half-field. These observations excluded the possibility of any kind of interference between the test and the cue stimuli. Another interesting observation was the essentiality of continuous visibility of the test stimulus but not the cue for effective cuing. When the contrast of the visual scene was inverted, differences in response frequencies and cuing effects were observed. Syndirectional yaw torque responses became more frequent than the antidirectional responses and cuing was no longer effective in the lower visual field with inverted contrast. Interestingly, the test stimulus with simultaneous displacement of two stripes not only effectuated a phasic yaw torque response but also a landing response. A 50 landing response was produced in more than half of the cases whenever a yaw torque response was produced. Elucidation of the neuronal correlates of the cued attention was commenced. Pilot experiments with hydroxyurea (HU) treated flies showed that mushroom bodies were not required for the kind of guidance of attention tested in this study. Dopamine mutants were also tested for the guidance of attention in the lower visual field. Surprisingly, TH-Gal4/UAS-shits1 flies flew like wild-type flies and also showed normal optomotor response during the initial calibration phase of the experiment but did not show any phasic yaw torque or landing response at 18 °C, 25 °C or 30 °C. dumb2 flies that have almost no D1 dopamine receptor dDA1 expression in the mushroom bodies and the central complex (Kim et al. 2007) were also tested and like THGal4/ UAS-shits1 flies did not show any phasic yaw torque or landing response. Since the dopamine mutants did not show the basic yaw torque response for the test the role of dopamine in attention could not be deduced. A different paradigm would be needed to test these mutants. Not only can attention be guided through external cues, it can also be shifted endogenously (covert attention). Experiments with the windows having oscillating stripes nicely demonstrated the phenomenon of covert attention due to the production of a characteristic yaw torque pattern by the flies. However, the results were not easily quantifiable and reproducible thereby calling for a more systematic approach. Experiments with simultaneous opposing displacements of two stripes provide a promising avenue as the results from these experiments showed that the flies had a higher tendency to deliver one type of response than when the responses would be produced stochastically suggesting that attention increased this tendency. Further experiments and analysis of such experiments could shed more light on the mechanisms of covert attention in flies. N2 - Zu jedem Zeitpunkt stellt unsere Umgebung eine so große Menge an visueller Information zur Verfügung, dass das Herausfiltern der wichtigen Informationen für eine weitere Verarbeitung eine grundlegende Herausforderung für jedes komplexe visuelle System darstellt. Bewerkstelligt wird dies u.a. mittels der selektiven Aufmerksamkeit, die die sensorischen Inputs einer Quelle, unter Ausschluss aller anderen, hervorhebt (Luck und Mangun 2009). Aufmerksamkeit wurde an Menschen und nichtmenschlichen Primaten bereits ausgiebig untersucht. Visuelle Aufmerksamkeit bei Drosophila konnte 1980 zum ersten Mal nachgewiesen werden (Wolf und Heisenberg 1980), jedoch blieb dieses Feld bis heute großen Teils unerforscht. In jüngster Zeit tauchten Studien auf, die der Aufmerksamkeit eine Rolle bei verschiedenen Verhaltensleistungen zuweisen, ohne jedoch die charakteristischen Eigenschaften von Aufmerksamkeit zu spezifizieren. Es ist das Ziel dieser Arbeit, das Phänomen der sowohl durch externe Reize ausgelösten, als auch endogen erzeugten (covert attention) visuellen Aufmerksamkeit bei wildtypischen Drosophila im stationären Flug am Drehmoment-Messgerät zu charakterisieren. Hierbei ist ein wesentlicher Aspekt durch die Entwicklung von quantitativen Tests das Verhalten von wildtypischen Fliegen so zu analysieren, dass es mit dem Verhalten genetischer Varianten verglichen werden kann. Ein solcher Vergleich würde helfen, die molekularen, genetischen und neuronalen Grundlagen der Aufmerksamkeit zu verstehen, da bei Drosophila für solche Untersuchungen einfach anwendbare genetische Werkzeuge zur Verfügung stehen. Ein Modell der Aufmerksamkeit bei Drosophila könnte auch für die visuelle Aufmerksamkeit bei Primaten relevant sein, falls diese Systeme homolog sind, d.h. in der Stammesgeschichte einen gemeinsamen Ursprung haben. Mittels äußerer Reize lässt sich die Aufmerksamkeit auf einen bestimmten Ort im visuellen Feld führen. In dieser Arbeit wird die Aufmerksamkeit einer Fliege durch visuelle Reize auf jeweils eines der beiden visuellen Halbfelder gelenkt. Es wird ein einfaches und robustes Paradigma entwickelt, dessen Ergebnisse ohne viel Aufwand quantifizierbar sind. Eine wesentliche Eigenschaft der exogen gelenkten visuellen Aufmerksamkeit, zu deren Entdeckung dieses Paradigma unter anderen beigetragen hat, ist, dass diese Art der Lenkung der Aufmerksamkeit auf den unteren Teil des visuellen Feldes der Fliege beschränkt ist. Der lenkende Reiz hat einen Nacheffekt, das heißt, er kann bis zu zwei Sekunden vor dem Test auftreten und dessen Ergebnis trotzdem beeinflussen. Auch bei einer räumlichen Trennung des Reizes vom Test um mindestens 20° kann er noch die Aufmerksamkeit auf diesen ziehen, wobei hier dann die Ausdehnung des Aufmerksamkeitsfeldes kleiner als ein unteres visuelles Halbfeld 52 ist. Durch diese Beobachtungen wird eine mögliche Interferenz zwischen Reiz und Test ausgeschlossen. Eine weitere interessante Beobachtung ist, dass für ein effektives Lenken der Aufmerksamkeit der Teststimulus aber nicht der lenkende Reiz durchgehend sichtbar sein muss. Eine Invertierung des Kontrastes der visuellen Reizgebung führt zu veränderten Antwortfrequenzen und Effekten der Aufmerksamkeitslenkung. So treten syndirektionale Drehmoment-Antworten häufiger auf als antidirektionale und die Lenkung der Aufmerksamkeit im unteren visuellen Feld durch einen vorhergehenden Reiz tritt nicht auf. Interessanterweise kann der Teststimulus, die simultane Verschiebung zweier Streifen nicht nur eine phasische Drehmoment-Antwort, sondern auch einen Landeversuch auslösen. Dieser wird in mehr als der Hälfte aller Fälle, in denen eine Drehmomentantwort gezeigt wird, beobachtet. Eine Untersuchung der neuronalen Korrelate der reizgelenkten Aufmerksamkeit wurde begonnen. In Pilotexperimenten mit Fliegen, die mit Hydroxyharnstoff (HU) behandelt worden waren, zeigte sich, dass die adulten Pilzkörper nicht für diese Art der Lenkung der Aufmerksamkeit, wie sie in der vorliegenden Arbeit untersucht wird, benötigt werden. Des weiteren wurden auch Fliegenmutanten mit Defekten im Dopamin-System getestet. Überraschenderweise flogen TH-Gal4/UAS-shits1 Fliegen wie wildtypische Fliegen und zeigten auch ein normales optomotorisches Verhalten während der anfänglichen Kalibrierungsphase des Experimentes. Sie zeigten jedoch weder phasische Drehmoment-Antworten noch Landeversuche bei 18°C, 25°C oder 30°C. Auch dumb2 Fliegen, die so gut wie keine D1 Dopaminrezeptoren in den Pilzkörpern und im Zentralkomplex exprimieren (Kim et al. 2007), zeigten die gleichen Verhaltensdefekte wie TH-Gal4/UAS-shits1 -Fliegen. Da bei den Dopaminmutanten die phasische Drehmomentantwort fehlte, konnte die Bedeutung von Dopamin für Aufmerksamkeit aus diesem Test nicht abgeleitet werden. Um diese Mutanten zu testen, bedarf es eines anderen Paradigmas. Die Richtung der Aufmerksamkeit kann nicht nur durch äußere Reize gelenkt, sondern auch endogen verändert werden (covert attention). Experimente mit zwei oszillierenden Streifenmustern in der rechten und linken Sehfeld-Hälfte verdeutlichen das Phänomen der endogen gesteuerten Aufmerksamkeit anschaulich, da die Fliegen hierbei charakteristische Drehmomentmuster für das eine oder andere Muster erzeugen. Weil diese Einzelbeobachtungen aber nicht leicht quantifizierbar sind, ist hier ein neuer Ansatz notwendig. Die obigen Experimente mit zwei einzelnen Streifen, die gleichzeitig nach rechts und links versetzt werden, versprechen systematischere Ergebnisse. Die Fliegen neigen stärker dazu einen bestimmten Antwort-Typ (Drehmoment nach links bzw. nach rechts) beizubehalten, als eine statistische Verteilung annehmen ließe. Es ist zu vermuten, dass dieser Effekt durch die Aufmerksamkeit hervorgerufen wird. Die Analyse solcher Experimente könnte also die endogene Steuerung der Aufmerksamkeit beleuchten. KW - Visuelle Aufmerksamkeit KW - Taufliege KW - Visuelle Aufmerksamkeit KW - Drosophila melanogaster KW - Visual attention KW - Drosophila melanogaster KW - torque meter Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69616 ER - TY - THES A1 - Halder, Partho T1 - Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library T1 - Identifikation und Charakterisierung von synaptischen Proteinen von Drosophila melanogaster mit Hilfe von monoklonalen Antikörpern der Würzburger Hybridoma-Bibliothek N2 - For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures. N2 - Für einen Großteil der Proteine, die im menschlichen Gehirn exprimiert werden, ist lediglich die Primärstruktur aus dem Genomprojekt bekannt. Proteine, die in der Evolution konserviert wurden, können in genetischen Modellsystemen wie Drosophila untersucht werden. In dieser Doktorarbeit werden monoklonale Antikörper (mAk) aus der Würzburger Hybridoma Bibliothek produziert und charakterisiert, mit dem Ziel, die erkannten Proteine zu identifizieren. Der mAk ab52 wurde als IgM typisiert, das auf Western Blots ein zytosolisches Protein von Mr ~110 kDa erkennt. Das Antigen wurde durch zwei-dimensionale Gelelektrophorese (2DE) als einzelner Fleck aufgelöst. Massenspektrometrische Analyse dieses Flecks identifizierte dass EPS-15 (epidermal growth factor receptor pathway substrate clone 15) als viel versprechenden Kandidaten. Da für einen anderen mAk aus der Bibliothek, aa2, bereits bekannt war, dass er EPS-15 erkennt, wurden die Western-Blot-Signale der beiden Antikörper nach 1D und 2D Trennungen von Kopfhomogenat verglichen. Die Ähnlichkeit der beiden Muster deuteten darauf hin, dass beide Antigene dasselbe Protein erkennen. Das Fehlen des Wildtyp-Signals in homozygoten Eps15 Mutanten in einem Western Blot mit mAk ab52 bestätigten schließlich, dass EPS-15 das Antigen zu mAk ab52 darstellt. Demnach erkennen beide mAk, aa2 und ab52, das Drosophila Homolog zu EPS-15. Da mAk aa2 ein IgG ist, dürfte er für Anwendungen wie Immunpräzipitation (IP) besser geeignet sein. Er wurde daher bereits bei der Developmental Studies Hybridoma Bank (DSHB) eingereicht, um ihn der ganzen Forschergemeinde leicht zugänglich zu machen. Der mAk na21 wurde ebenfalls als IgM typisiert. Er erkennt ein Membran assoziiertes Antigen von Mr ~10 kDa auf Western Blots. Aufgrund der Membranassoziierung des Proteins war es nicht möglich, es in 2DE aufzulösen und da es sich um ein IgM handelt, war eine Anreicherung des Antigens mittels IP nicht erfolgreich. Vorversuche zur biochemischen Reinigung des endogenen Proteins aus Gewebe waren Erfolg versprechend, konnten aber aus Zeitmangel nicht abgeschlossen werden. Daher erscheint eine biochemische Reinigung des Proteins für eine Identifikation durch Massenspektrometrie möglich. Eine Reihe weiterer mAk wurden hinsichtlich ihrer Färbemuster auf Gefrierschnitten und in Ganzpräparaten von Drosophila Gehirnen untersucht. Allerdings färbten viele dieser mAk sehr wenige Strukturen im Gehirn, so dass nur eine sehr begrenzte Menge an Protein als Startmaterial verfügbar wäre. Da diese Antikörper keine Signale auf Western Blots produzierten und daher eine Anreicherung des Antigens durch elektrophoretische Methoden ausschlossen, wurde keine Reinigung versucht. Andererseits macht die spezifische Lokalisation dieser Proteine sie hoch interessant für eine weitere Charakterisierung, da sie eine besonders spezialisierte Rolle in der Entwicklung oder für die Funktion von neuralen Schaltkreisen, in denen sie vorkommen, spielen könnten. Die Reinigung und Identifikation solcher Proteine mit niedrigem Expressionsniveau würde neue Methoden der Anreicherung der gefärbten Strukturen erfordern. KW - Taufliege KW - Synapse KW - Proteine KW - Monoklonaler Antikörper KW - synaptische Proteine KW - monoklonale Antikörper KW - Drosophila melanogaster KW - synaptic proteins KW - monoclonal antibodies Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67325 N1 - korrigierte Ausgabe der Arbeit aus dem Jahr 2022 unter: https://doi.org/10.25972/OPUS-27020 ER - TY - THES A1 - Saumweber, Timo T1 - Mechanism of Learning and Plasticity in Larval Drosophila T1 - Lern- und Plastizitätsmechanismen in Drosophila Larven N2 - According to a changing environment it is crucial for animals to make experience and learn about it. Sensing, integrating and learning to associate different kinds of modalities enables animals to expect future events and to adjust behavior in the way, expected as the most profitable. Complex processes as memory formation and storage make it necessary to investigate learning and memory on different levels. In this context Drosophila melanogaster represents a powerful model organism. As the adult brain of the fly is still quite complex, I chose the third instar larva as model - the more simple the system, the easier to isolate single, fundamental principles of learning. In this thesis I addressed several kinds of questions on different mechanism of olfactory associative and synaptic plasiticity in Drosophila larvae. I focused on short-term memory throughout my thesis. First, investigating larval learning on behavioral level, I developed a one-odor paradigm for olfactory associative conditioning. This enables to estimate the learnability of single odors, reduces the complexity of the task and simplify analyses of "learning mutants". It further allows to balance learnability of odors for generalization-type experiments to describe the olfactory "coding space". Furthermore I could show that innate attractiveness and learnability can be dissociated and found finally that paired presentation of a given odor with reward increase performance, whereas unpaired presentations of these two stimuli decrease performance, indicating that larva are able to learn about the presence as well as about the absence of a reward. Second, on behavioral level, together with Thomas Niewalda and colleagues we focussed on salt processing in the context of choice, feeding and learning. Salt is required in several physiological processes, but can neither be synthesized nor stored. Various salt concentrations shift the valence from attraction to repulsion in reflexive behaviour. Interestingly, the reinforcing effect of salt in learning is shifted by more than one order of magnitude toward higher concentrations. Thus, the input pathways for gustatory behavior appear to be more sensitive than the ones supporting gustatory reinforcement, which is may be due to the dissociation of the reflexive and the reinforcing signalling pathways of salt. Third, in cooperation with Michael Schleyer we performed a series of behavioral gustatory, olfactory preference tests and larval learning experiments. Based on the available neuroanatomical and behavioral data we propose a model regarding chemosensory processing, odor-tastant memory trace formation and the 'decision' like process. It incorporates putative sites of interaction between olfactory and gustatory pathways during the establishment as well as behavioral expression of odor-tastant memory. We claim that innate olfactory behavior is responsive in nature and suggest that associative conditioned behavior is not a simple substitution like process, but driven more likely by the expectation of its outcome. Fourth, together with Birgit Michels and colleagues we investigated the cellular site and molecular mode of Synapsin, an evolutionarily conserved, presynaptic vesicular phosphoprotein and its action in larval learning. We confirmed a previously described learning impairment upon loss of Synapsin. We localized this Synapsin dependent memory trace in the mushroom bodies, a third-order "cortical" brain region, and could further show on molecular level, that Synapsin is as a downstream element of the AC-cAMP-PKA signalling cascade. This study provides a comprehensive chain of explanation from the molecular level to an associative behavioral change. Fifth, in the main part of my thesis I focused on molecular level on another synaptic protein, the Synapse associated protein of 47kDa (Sap47) and its role in larval behavior. As a member of a phylogenetically conserved gene family of hitherto unknown function. It is localized throughout the whole neuropil of larval brains and associated with presynaptic vesicles. Upon loss of Sap47 larvae exhibit normal sensory detection of the to-be-associated stimuli as well as normal motor performance and basic synaptic transmission. Interestingly, short-term plasticity is distorted and odorant–tastant associative learning ability is reduced. This defect in associative function could be rescued by restoring Sap47 expression. Therefore, this report is the first to suggest a function for Sap47 and specifically argues that Sap47 is required for synaptic as well as for behavioral plasticity in Drosophila larva. This prompts the question whether its homologs are required for synaptic and behavioral plasticity also in other species. Further in the last part of my thesis I contributed to the study of Ayse Yarali. Her central topic was the role of the White protein in punishment and relief learning in adult flies. Whereas stimuli that precede shock during training are subsequently avoided as predictors for punishment, stimuli that follow shock during training are later on approached, as they predict relief. Concerning the loss of White we report that pain-relief learning as well as punishment learning is changed. My contribution was a comparison between wild type and the white1118 mutant larvae in odor-reward learning. It turned out that a loss of White has no effect on larval odorant-tastant learning. This study, regarding painrelief learning provides the very first hints concerning the genetic determinants of this form of learning. N2 - In einer belebten, sich stetig wandelnden Umwelt ist es essenziell für Lebewesen, Informationen wahrzunehmen und Erfahrungen zu sammeln, um ihr Verhalten entsprechend zu modifizieren. Verschiedene Arten von Reizen werden wahrgenommen, integriert und gespeichert. Dies ermöglicht Tieren künftige Ereignisse vorherzusehen und ihr Verhalten entsprechend ihren Erwartungen anzupassen. Die Komplexität von Lernprozessen und Gedächtnisspeicherung macht es notwendig, diese Prozesse auf unterschiedlichen Ebenen zu untersuchen. In diesem Zusammenhang hat sich Drosophila melanogaster als besonders geeigneter Modellorganismus herauskristallisiert. Trotz einer relativ geringen neuronalen Komplexität im Vergleich zu höheren Organismen, zeigt sie ein reichhaltiges Verhaltensrepertoire. Dennoch ist das Gehirn von adulten Furchtfliegen ein hoch komplexes System. Je einfacher ein System ist, umso vielversprechender ist es scheinbar, einzelne fundamentale Aspekte dieses Systems zu isolieren und zu untersuchen. In meiner Arbeit nutzte ich daher als Modelorganismus das dritte Larvenstadium der Fliege und untersuchte auf verschiedenen Ebenen unterschiedliche Mechanismen olfaktorischer, assoziativer und synaptischer Plastizität. Dabei fokussierte ich mich stets auf Kurzzeitgedächtnis. Zunächst untersuchte ich assoziatives Lernen auf Verhaltensebene. Hierfür entwickelte ich ein Ein-Duft-Lernparadigma für olfaktorische klassische Konditionierung von Drosophila Larven. Dies ermöglicht, die Lernbarkeit von einzelnen Düften zu untersuchen, reduziert die Komplexität der Aufgabenstellung für die Larven und vereinfacht die Analyse von Lernmutanten. Weiterhin erlaubt es die Lernbarkeit von Düften für Generalisierungs-experimente zu balancieren, um zu beschreiben, wie Duftidentitäten im Nervensystem kodiert werden. Ich konnte zeigen, dass die Lernbarkeit von Düften nicht unmittelbar mit der naiven Duftpräferenz korreliert. Ferner konnte in dieser Studie nachgewiesen werden, dass durch gepaarte Präsentation von Duft und Zuckerbelohnung die Präferenz im Bezug auf diesen Duft zunimmt, wohingegen ungepaarte Präsentation dieser beiden Reize zu einer Abnahme der Duftpräferenz führt. Dies weist darauf hin, dass es Larven auch möglich ist etwas über die Abwesenheit der Belohnung zu lernen. In einer zweiten Studie befasste ich mich, in Zusammenarbeit mit Thomas Niewalda, mit der Verarbeitung von Salz im Bezug auf das Wahl-, Fress- und Lernverhalten von Drosophila Larven. Salze spielen in mehreren physiologischen Prozessen eine bedeutende Rolle, können von Larven aber weder synthetisiert noch gespeichert werden. Unterschiedliche Salzkonzentrationen haben unterschiedliche Auswirkungen auf das Larvenverhalten. Während niedrige Konzentrationen von Larven bevorzugt werden, werden hohe Salzkonzentrationen vermieden. Lernexperimente zeigten, dass Salz ebenfalls dosisabhängig als positiver oder negativer Verstärker wirkt. Interessanterweise zeigt sich im Vergleich zum Wahl- und Fressverhalten, dass der Punkt, an dem Salz von einem appetitiven zu einem aversiven Stimulus wird, um mehr als eine Größenordnung in Richtung höherer Konzentrationen verschoben ist. Die Sensitivität der gustatorischen Transduktion ist somit höher als die Transduktion des Verstärkersignals. Möglicherweise liegt dies an der Dissoziation dieser beiden Transduktionswege. In der dritten Studie dieser Arbeit wurden, in Kooperation mit Michael Schleyer, eine Vielzahl an olfaktorischen und gustatorischen Präferenztests, sowie eine Reihe an Lernexperimenten durchgeführt. Basierend auf bekannten Neuroanatomiestudien und unseren Verhaltensdaten, propagieren wir ein Model für Duft- und Geschmacksprozessierung, die Etablierung von Gedächtnisspuren, sowie Entscheidungsprozessen. Sowohl mögliche Interaktionen zwischen olfaktorischen und gustatorischen Transduktionswegen, sowie der Abruf von Gedächtnisinhalten werden berücksichtigt. Wir schlagen vor, dass naives olfaktorisches Verhalten natürlicherweise reflexiv ist. Assoziativ konditioniertes Verhalten kann allerdings nicht als reiner Substitutionsprozess betrachtet werden, sondern wird besser interpretiert im Hinblick auf die Erwartung, die er auslöst, woraufhin ein bestimmtes Verhaltensprogramm gestartet wird. In Zusammenarbeit mit Birgit Michels untersuchte ich auf zellulärer Ebene die molekulare Funktion von Synapsin im assoziativen Lernen von Drosophila Larven. Synapsin gehört zu den hochkonservierten, präsynaptischen, vesikulären Phosphoproteinen. Wir konnten einen früher bereits beschriebenen Lernphänotyp von Synapsin Mutanten Larven bestätigen. Die Synapsin abhängige Gedächtnisspur konnten wir auf wenige Zellen im Pilzkörper, einer dem olfaktorischen Cortex der Vertebraten homologen Struktur, lokalisieren. Auf molekularer Ebene wurde nachgewiesen, dass Synapsin ein Zielprotein in der bekannten AC-cAMP-PKA Lernkaskade ist. Diese Studie zeigt einen Zusammenhang zwischen molekularen Mechanismen assoziativer Plastizität und einer daraus resultierenden Verhaltensänderung der Tiere. In meinem Hauptprojekt befasste ich mich auf molekularer Ebene mit einem weiteren synaptischen Protein, dem Synapsen assoziierten Protein von 47kDa (Sap47) und seiner Rolle im Verhalten von Drosophila Larven. Sap47 wird in allen neuropilen Bereichen expremiert und ist mit synaptischen Vesikeln assoziiert. Das Fehlen von Sap47 beeinflusst weder die Detektion der zu assoziierenden Reize, noch das Kriechverhalten der Larven. Auch die synaptische Übertragung, ausgelöst durch einzelne Stimulationen an der neuromuskulären Synapse, ist nicht beeinträchtigt. Interessanterweise führt das Fehlen von Sap47 sowohl zu veränderter Kurzzeit-Plastizität an dieser Synapse, sowie zu einer Einschränkung in der Bildung von Duft-Zucker-Gedächtnis. Diese Studie liefert einen ersten Hinweis auf eine Funktion von Sap47 in synaptischer und assoziativer Plastizität. Es stellt sich die Frage, ob auch in anderen Organismen die zu Drosophila Sap47-homologen Proteine notwendig für synaptische und Lernplastizität sind. Im letzten Teil meiner Dissertation war ich an einem Projekt von Ayse Yarali beteiligt. Die zentrale Fragestellung in dieser Studie war, ob eine Mutation im white Gen Bestrafungs- und/ oder Erleichterungslernen beeinflusst. Wird ein neutraler Reiz während einer Trainingsphase mit einem Elektroschock bestraft, wird dieser später konsequent vermieden, da er einen Elektroschock vorhersagt (Bestrafungslernen). Eine Umkehrung der Reihenfolge der Stimulipräsentation, sodass dem Schock stets ein neutraler Stimulus folgt, führt später, in der Testphase, zu einer positiven Reaktion auf diesen naiv neutralen Reiz (Erleichterungslernen). Ein Verlust des White Proteins in white1118 Mutanten verändert beide Arten von Gedächtnissen in adulten Fliegen. Meine Beteiligung an dieser Arbeit war ein Vergleich zwischen wildtypischen Larven und white1118 mutanten Larven in Duft-Zucker Assoziationsexperimenten. Es zeigte sich, dass der Verlust dieses Proteins auf larvale Duft-Zucker Konditionierung keinen Einfluss hat. Im Larvenlernen kann somit das Verhalten von transgenen Tieren, die zumeist eine Mutation im white Gen als Markergen tragen, interpretiert werden, ohne die Funktion des white Gens berücksichtigen zu müssen. Im Bezug auf Erleichterungslernen liefert diese Arbeit einen ersten Hinweis auf eine genetische Komponente, der entscheidend für diese Art des assoziativen Lernens ist. KW - Taufliege KW - Larve KW - Verhalten KW - Lernen KW - Geruchswahrnehmung KW - Drosophila Larve KW - Olfaktion KW - Attraktion KW - Drosophila Larva KW - Behavior KW - Learning KW - Olfaction KW - Attraction Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66354 ER -