TY - JOUR A1 - del Olmo Toledo, Valentina A1 - Puccinelli, Robert A1 - Fordyce, Polly M. A1 - Pérez, J. Christian T1 - Diversification of DNA binding specificities enabled SREBP transcription regulators to expand the repertoire of cellular functions that they govern in fungi JF - PLoS Genetics N2 - The Sterol Regulatory Element Binding Proteins (SREBPs) are basic-helix-loop-helix transcription regulators that control the expression of sterol biosynthesis genes in higher eukaryotes and some fungi. Surprisingly, SREBPs do not regulate sterol biosynthesis in the ascomycete yeasts (Saccharomycotina) as this role was handed off to an unrelated transcription regulator in this clade. The SREBPs, nonetheless, expanded in fungi such as the ascomycete yeasts Candida spp., raising questions about their role and evolution in these organisms. Here we report that the fungal SREBPs diversified their DNA binding preferences concomitantly with an expansion in function. We establish that several branches of fungal SREBPs preferentially bind non-palindromic DNA sequences, in contrast to the palindromic DNA motifs recognized by most basic-helix-loop-helix proteins (including SREBPs) in higher eukaryotes. Reconstruction and biochemical characterization of the likely ancestor protein suggest that an intrinsic DNA binding promiscuity in the family was resolved by alternative mechanisms in different branches of fungal SREBPs. Furthermore, we show that two SREBPs in the human commensal yeast Candida albicans drive a transcriptional cascade that inhibits a morphological switch under anaerobic conditions. Preventing this morphological transition enhances C. albicans colonization of the mammalian intestine, the fungus’ natural niche. Thus, our results illustrate how diversification in DNA binding preferences enabled the functional expansion of a family of eukaryotic transcription regulators. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228983 VL - 14 ER - TY - JOUR A1 - Moreno-Velásquez, Sergio D. A1 - Pérez, J. Christian T1 - Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans JF - mSphere N2 - The study of gene expression in fungi has typically relied on measuring transcripts in populations of cells. A major disadvantage of this approach is that the transcripts’ spatial distribution and stochastic variation among individual cells within a clonal population is lost. Traditional fluorescence in situ hybridization techniques have been of limited use in fungi due to poor specificity and high background signal. Here, we report that in situ hybridization chain reaction (HCR), a method that employs split-initiator probes to trigger signal amplification upon mRNA-probe hybridization, is ideally suited for the imaging and quantification of low-abundance transcripts at single-cell resolution in the fungus Candida albicans. We show that HCR allows the absolute quantification of transcripts within a cell by microscopy as well as their relative quantification by flow cytometry. mRNA imaging also revealed the subcellular localization of specific transcripts. Furthermore, we establish that HCR is amenable to multiplexing by visualizing different transcripts in the same cell. Finally, we combine HCR with immunostaining to image specific mRNAs and proteins simultaneously within a single C. albicans cell. The fungus is a major pathogen in humans where it can colonize and invade mucosal surfaces and most internal organs. The technical development that we introduce, therefore, paves the way to study the patterns of expression of pathogenesis-associated C. albicans genes in infected organs at single-cell resolution. KW - hybridization chain reaction KW - FISH KW - Candida albicans KW - mRNA KW - single-cell analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-370999 VL - 6 ER - TY - JOUR A1 - Böhm, Lena A1 - Torsin, Sanda A1 - Tint, Su Hlaing A1 - Eckstein, Marie Therese A1 - Ludwig, Tobias A1 - Pérez, J. Christian T1 - The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice JF - PLoS Pathogens N2 - Many microorganisms that cause systemic, life-threatening infections in humans reside as harmless commensals in our digestive tract. Yet little is known about the biology of these microbes in the gut. Here, we visualize the interface between the human commensal and pathogenic fungus Candida albicans and the intestine of mice, a surrogate host. Because the indigenous mouse microbiota restricts C. albicans settlement, we compared the patterns of colonization in the gut of germ free and antibiotic-treated conventionally raised mice. In contrast to the heterogeneous morphologies found in the latter, we establish that in germ free animals the fungus almost uniformly adopts the yeast cell form, a proxy of its commensal state. By screening a collection of C. albicans transcription regulator deletion mutants in gnotobiotic mice, we identify several genes previously unknown to contribute to in vivo fitness. We investigate three of these regulators—ZCF8, ZFU2 and TRY4—and show that indeed they favor the yeast form over other morphologies. Consistent with this finding, we demonstrate that genetically inducing non-yeast cell morphologies is detrimental to the fitness of C. albicans in the gut. Furthermore, the identified regulators promote adherence of the fungus to a surface covered with mucin and to mucus-producing intestinal epithelial cells. In agreement with this result, histology sections indicate that C. albicans dwells in the murine gut in close proximity to the mucus layer. Thus, our findings reveal a set of regulators that endows C. albicans with the ability to endure in the intestine through multiple mechanisms. KW - Candida albicans KW - deletion mutagenesis KW - gastrointestinal tract KW - fungi KW - regulator genes KW - gene regulation KW - mouse models KW - fungal genetics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159120 VL - 13 IS - 10 ER -