TY - JOUR A1 - Breitenbach, Tim A1 - Borzì, Alfio T1 - The Pontryagin maximum principle for solving Fokker–Planck optimal control problems JF - Computational Optimization and Applications N2 - The characterization and numerical solution of two non-smooth optimal control problems governed by a Fokker–Planck (FP) equation are investigated in the framework of the Pontryagin maximum principle (PMP). The two FP control problems are related to the problem of determining open- and closed-loop controls for a stochastic process whose probability density function is modelled by the FP equation. In both cases, existence and PMP characterisation of optimal controls are proved, and PMP-based numerical optimization schemes are implemented that solve the PMP optimality conditions to determine the controls sought. Results of experiments are presented that successfully validate the proposed computational framework and allow to compare the two control strategies. KW - Fokker–Planck equation KW - Pontryagin maximum principle KW - non-smooth optimal control problems KW - stochastic processes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232665 SN - 0926-6003 VL - 76 ER - TY - JOUR A1 - Kaltdorf, Martin A1 - Breitenbach, Tim A1 - Karl, Stefan A1 - Fuchs, Maximilian A1 - Kessie, David Komla A1 - Psota, Eric A1 - Prelog, Martina A1 - Sarukhanyan, Edita A1 - Ebert, Regina A1 - Jakob, Franz A1 - Dandekar, Gudrun A1 - Naseem, Muhammad A1 - Liang, Chunguang A1 - Dandekar, Thomas T1 - Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis JF - Scientific Reports N2 - The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell–cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors. KW - cellular signalling networks KW - computer modelling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313303 VL - 13 ER - TY - JOUR A1 - Caliskan, Aylin A1 - Caliskan, Deniz A1 - Rasbach, Lauritz A1 - Yu, Weimeng A1 - Dandekar, Thomas A1 - Breitenbach, Tim T1 - Optimized cell type signatures revealed from single-cell data by combining principal feature analysis, mutual information, and machine learning JF - Computational and Structural Biotechnology Journal N2 - Machine learning techniques are excellent to analyze expression data from single cells. These techniques impact all fields ranging from cell annotation and clustering to signature identification. The presented framework evaluates gene selection sets how far they optimally separate defined phenotypes or cell groups. This innovation overcomes the present limitation to objectively and correctly identify a small gene set of high information content regarding separating phenotypes for which corresponding code scripts are provided. The small but meaningful subset of the original genes (or feature space) facilitates human interpretability of the differences of the phenotypes including those found by machine learning results and may even turn correlations between genes and phenotypes into a causal explanation. For the feature selection task, the principal feature analysis is utilized which reduces redundant information while selecting genes that carry the information for separating the phenotypes. In this context, the presented framework shows explainability of unsupervised learning as it reveals cell-type specific signatures. Apart from a Seurat preprocessing tool and the PFA script, the pipeline uses mutual information to balance accuracy and size of the gene set if desired. A validation part to evaluate the gene selection for their information content regarding the separation of the phenotypes is provided as well, binary and multiclass classification of 3 or 4 groups are studied. Results from different single-cell data are presented. In each, only about ten out of more than 30000 genes are identified as carrying the relevant information. The code is provided in a GitHub repository at https://github.com/AC-PHD/Seurat_PFA_pipeline. KW - single cell analysis KW - machine learning KW - explainability of machine learning KW - principal KW - feature analysis KW - model reduction KW - feature selection Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349989 SN - 2001-0370 VL - 21 ER - TY - INPR A1 - Breitenbach, Tim A1 - Borzì, Alfio T1 - On the SQH scheme to solve non-smooth PDE optimal control problems T2 - Numerical Functional Analysis and Optimization N2 - A sequential quadratic Hamiltonian (SQH) scheme for solving different classes of non-smooth and non-convex PDE optimal control problems is investigated considering seven different benchmark problems with increasing difficulty. These problems include linear and nonlinear PDEs with linear and bilinear control mechanisms, non-convex and discontinuous costs of the controls, L\(^1\) tracking terms, and the case of state constraints. The SQH method is based on the characterisation of optimality of PDE optimal control problems by the Pontryagin's maximum principle (PMP). For each problem, a theoretical discussion of the PMP optimality condition is given and results of numerical experiments are presented that demonstrate the large range of applicability of the SQH scheme. KW - SQH method KW - non-smooth optimization KW - Pontryagin maximum principle KW - nonconvex optimization Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180936 N1 - This is an Accepted Manuscript of an article published by Taylor & Francis in Numerical Functional Analysis and Optimization on 27.04.2019, available online: http://www.tandfonline.com/10.1080/01630563.2019.1599911. ER - TY - JOUR A1 - Kienle-Garrido, Melina-Lorén A1 - Breitenbach, Tim A1 - Chudej, Kurt A1 - Borzì, Alfio T1 - Modeling and numerical solution of a cancer therapy optimal control problem JF - Applied Mathematics N2 - A mathematical optimal-control tumor therapy framework consisting of radio- and anti-angiogenesis control strategies that are included in a tumor growth model is investigated. The governing system, resulting from the combination of two well established models, represents the differential constraint of a non-smooth optimal control problem that aims at reducing the volume of the tumor while keeping the radio- and anti-angiogenesis chemical dosage to a minimum. Existence of optimal solutions is proved and necessary conditions are formulated in terms of the Pontryagin maximum principle. Based on this principle, a so-called sequential quadratic Hamiltonian (SQH) method is discussed and benchmarked with an “interior point optimizer―a mathematical programming language” (IPOPT-AMPL) algorithm. Results of numerical experiments are presented that successfully validate the SQH solution scheme. Further, it is shown how to choose the optimisation weights in order to obtain treatment functions that successfully reduce the tumor volume to zero. KW - cancer KW - therapy KW - optimal control problem Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177152 VL - 9 IS - 8 ER - TY - JOUR A1 - Breitenbach, Tim A1 - Lorenz, Kristina A1 - Dandekar, Thomas T1 - How to steer and control ERK and the ERK signaling cascade exemplified by looking at cardiac insufficiency JF - International Journal of Molecular Sciences N2 - Mathematical optimization framework allows the identification of certain nodes within a signaling network. In this work, we analyzed the complex extracellular-signal-regulated kinase 1 and 2 (ERK1/2) cascade in cardiomyocytes using the framework to find efficient adjustment screws for this cascade that is important for cardiomyocyte survival and maladaptive heart muscle growth. We modeled optimal pharmacological intervention points that are beneficial for the heart, but avoid the occurrence of a maladaptive ERK1/2 modification, the autophosphorylation of ERK at threonine 188 (ERK\(^{Thr188}\) phosphorylation), which causes cardiac hypertrophy. For this purpose, a network of a cardiomyocyte that was fitted to experimental data was equipped with external stimuli that model the pharmacological intervention points. Specifically, two situations were considered. In the first one, the cardiomyocyte was driven to a desired expression level with different treatment strategies. These strategies were quantified with respect to beneficial effects and maleficent side effects and then which one is the best treatment strategy was evaluated. In the second situation, it was shown how to model constitutively activated pathways and how to identify drug targets to obtain a desired activity level that is associated with a healthy state and in contrast to the maleficent expression pattern caused by the constitutively activated pathway. An implementation of the algorithms used for the calculations is also presented in this paper, which simplifies the application of the presented framework for drug targeting, optimal drug combinations and the systematic and automatic search for pharmacological intervention points. The codes were designed such that they can be combined with any mathematical model given by ordinary differential equations. KW - optimal pharmacological modulation KW - efficient intervention points KW - ERK signaling KW - optimal treatment strategies KW - optimal drug targeting KW - optimal drug combination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285164 SN - 1422-0067 VL - 20 IS - 9 ER - TY - GEN A1 - Breitenbach, Tim T1 - Codes of examples for SQH method N2 - Code examples for the paper "On the SQH Scheme to Solve Nonsmooth PDE Optimal Control Problems" by Tim Breitenbach and Alfio Borzì published in the journal "Numerical Functional Analysis and Optimization", in 2019, DOI: 10.1080/01630563.2019.1599911 KW - SQH method KW - Code Examples Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178588 ER - TY - GEN A1 - Breitenbach, Tim T1 - Codes of examples for SQH method N2 - Code examples for the paper "On the SQH Scheme to Solve Nonsmooth PDE Optimal Control Problems" by Tim Breitenbach and Alfio Borzì published in the journal "Numerical Functional Analysis and Optimization", in 2019, DOI: 10.1080/01630563.2019.1599911 KW - Code examples KW - SQH method Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167587 ER - TY - GEN A1 - Breitenbach, Tim T1 - Codes of examples for SQH method N2 - Code examples for the paper "On the SQH Scheme to Solve Nonsmooth PDE Optimal Control Problems" by Tim Breitenbach and Alfio Borzì published in the journal "Numerical Functional Analysis and Optimization", in 2019, DOI: 10.1080/01630563.2019.1599911 KW - Code examples KW - SQH method Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165669 ER - TY - JOUR A1 - Breitenbach, Tim A1 - Helfrich-Förster, Charlotte A1 - Dandekar, Thomas T1 - An effective model of endogenous clocks and external stimuli determining circadian rhythms JF - Scientific Reports N2 - Circadian endogenous clocks of eukaryotic organisms are an established and rapidly developing research field. To investigate and simulate in an effective model the effect of external stimuli on such clocks and their components we developed a software framework for download and simulation. The application is useful to understand the different involved effects in a mathematical simple and effective model. This concerns the effects of Zeitgebers, feedback loops and further modifying components. We start from a known mathematical oscillator model, which is based on experimental molecular findings. This is extended with an effective framework that includes the impact of external stimuli on the circadian oscillations including high dose pharmacological treatment. In particular, the external stimuli framework defines a systematic procedure by input-output-interfaces to couple different oscillators. The framework is validated by providing phase response curves and ranges of entrainment. Furthermore, Aschoffs rule is computationally investigated. It is shown how the external stimuli framework can be used to study biological effects like points of singularity or oscillators integrating different signals at once. The mathematical framework and formalism is generic and allows to study in general the effect of external stimuli on oscillators and other biological processes. For an easy replication of each numerical experiment presented in this work and an easy implementation of the framework the corresponding Mathematica files are fully made available. They can be downloaded at the following link: https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/circadian/. KW - computational biology and bioinformatics KW - systems biology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261655 VL - 11 IS - 1 ER - TY - THES A1 - Breitenbach, Tim T1 - A sequential quadratic Hamiltonian scheme for solving optimal control problems with non-smooth cost functionals T1 - Ein sequentielles quadratisches Hamilton Schema um Optimalsteuerprobleme mit nicht-glatten Kostenfunktionalen zu lösen N2 - This thesis deals with a new so-called sequential quadratic Hamiltonian (SQH) iterative scheme to solve optimal control problems with differential models and cost functionals ranging from smooth to discontinuous and non-convex. This scheme is based on the Pontryagin maximum principle (PMP) that provides necessary optimality conditions for an optimal solution. In this framework, a Hamiltonian function is defined that attains its minimum pointwise at the optimal solution of the corresponding optimal control problem. In the SQH scheme, this Hamiltonian function is augmented by a quadratic penalty term consisting of the current control function and the control function from the previous iteration. The heart of the SQH scheme is to minimize this augmented Hamiltonian function pointwise in order to determine a control update. Since the PMP does not require any differ- entiability with respect to the control argument, the SQH scheme can be used to solve optimal control problems with both smooth and non-convex or even discontinuous cost functionals. The main achievement of the thesis is the formulation of a robust and efficient SQH scheme and a framework in which the convergence analysis of the SQH scheme can be carried out. In this framework, convergence of the scheme means that the calculated solution fulfills the PMP condition. The governing differential models of the considered optimal control problems are ordinary differential equations (ODEs) and partial differential equations (PDEs). In the PDE case, elliptic and parabolic equations as well as the Fokker-Planck (FP) equation are considered. For both the ODE and the PDE cases, assumptions are formulated for which it can be proved that a solution to an optimal control problem has to fulfill the PMP. The obtained results are essential for the discussion of the convergence analysis of the SQH scheme. This analysis has two parts. The first one is the well-posedness of the scheme which means that all steps of the scheme can be carried out and provide a result in finite time. The second part part is the PMP consistency of the solution. This means that the solution of the SQH scheme fulfills the PMP conditions. In the ODE case, the following results are obtained that state well-posedness of the SQH scheme and the PMP consistency of the corresponding solution. Lemma 7 states the existence of a pointwise minimum of the augmented Hamiltonian. Lemma 11 proves the existence of a weight of the quadratic penalty term such that the minimization of the corresponding augmented Hamiltonian results in a control updated that reduces the value of the cost functional. Lemma 12 states that the SQH scheme stops if an iterate is PMP optimal. Theorem 13 proves the cost functional reducing properties of the SQH control updates. The main result is given in Theorem 14, which states the pointwise convergence of the SQH scheme towards a PMP consistent solution. In this ODE framework, the SQH method is applied to two optimal control problems. The first one is an optimal quantum control problem where it is shown that the SQH method converges much faster to an optimal solution than a globalized Newton method. The second optimal control problem is an optimal tumor treatment problem with a system of coupled highly non-linear state equations that describe the tumor growth. It is shown that the framework in which the convergence of the SQH scheme is proved is applicable for this highly non-linear case. Next, the case of PDE control problems is considered. First a general framework is discussed in which a solution to the corresponding optimal control problem fulfills the PMP conditions. In this case, many theoretical estimates are presented in Theorem 59 and Theorem 64 to prove in particular the essential boundedness of the state and adjoint variables. The steps for the convergence analysis of the SQH scheme are analogous to that of the ODE case and result in Theorem 27 that states the PMP consistency of the solution obtained with the SQH scheme. This framework is applied to different elliptic and parabolic optimal control problems, including linear and bilinear control mechanisms, as well as non-linear state equations. Moreover, the SQH method is discussed for solving a state-constrained optimal control problem in an augmented formulation. In this case, it is shown in Theorem 30 that for increasing the weight of the augmentation term, which penalizes the violation of the state constraint, the measure of this state constraint violation by the corresponding solution converges to zero. Furthermore, an optimal control problem with a non-smooth L\(^1\)-tracking term and a non-smooth state equation is investigated. For this purpose, an adjoint equation is defined and the SQH method is used to solve the corresponding optimal control problem. The final part of this thesis is devoted to a class of FP models related to specific stochastic processes. The discussion starts with a focus on random walks where also jumps are included. This framework allows a derivation of a discrete FP model corresponding to a continuous FP model with jumps and boundary conditions ranging from absorbing to totally reflecting. This discussion allows the consideration of the drift-control resulting from an anisotropic probability of the steps of the random walk. Thereafter, in the PMP framework, two drift-diffusion processes and the corresponding FP models with two different control strategies for an optimal control problem with an expectation functional are considered. In the first strategy, the controls depend on time and in the second one, the controls depend on space and time. In both cases a solution to the corresponding optimal control problem is characterized with the PMP conditions, stated in Theorem 48 and Theorem 49. The well-posedness of the SQH scheme is shown in both cases and further conditions are discussed that ensure the convergence of the SQH scheme to a PMP consistent solution. The case of a space and time dependent control strategy results in a special structure of the corresponding PMP conditions that is exploited in another solution method, the so-called direct Hamiltonian (DH) method. N2 - Diese Dissertation handelt von einem neuen so genannten sequentiellen quadratischen Hamilton (SQH) iterativen Schema um Optimalsteuerungsprobleme mit Differentialmodellen und Kostenfunktionalen, die von glatt bis zu unstetig und nicht-konvex reichen, zu lösen. Dieses Schema basiert auf dem Pontryagin Maximumprinzip (PMP), welches notwendige Optimalitätsbedingungen für eine optimale Lösung zur Verfügung stellt. In diesem Rahmen wird eine Hamiltonfunktion definiert, die ihr Minimum punktweise an der optimalen Lösung des entsprechenden Optimalsteuerungsproblems annimmt. In diesem SQH Schema wird diese Hamiltonfunktion durch einen quadratischen Strafterm erweitert, der aus der aktuellen Steuerungsfunktion und der Steuerungsfunktion aus der vorherigen Iteration besteht. Das Herzstück des SQH Schemas ist die punktweise Minimierung dieser erweiterten Hamiltonfunktion um eine Aktualisierung der Steuerungsfunktion zu bestimmen. Da das PMP keine Differenzierbarkeit in Bezug auf das Steuerungsfunktionsargument verlangt, kann das SQH Schema dazu benutzt werden, Optimalsteuerungsprobleme mit sowohl glatten als auch nicht-konvexen oder sogar unstetigen Kostenfunktionalen zu lösen. Das Hauptergebnis dieser Dissertation ist die Formulierung eines robusten und effizienten SQH Schemas und eines Rahmens, in dem die Konvergenzanalyse des SQH Schemas ausgeführt werden kann. In diesem Rahmen bedeutet Konvergenz des Schemas, dass die berechnete Lösung die PMP Bedingung erfüllt. Die steuernden Differentialmodelle der betrachteten Optimalsteuerungsprobleme sind gewöhnliche Differentialgleichungen (ODEs) und partielle Differentialgleichungen (PDEs). Im PDE Fall werden elliptische und parabolische Gleichungen, sowie die Fokker-Planck (FP) Gleichung betrachtet. Für sowohl den ODE als auch den PDE Fall werden Annahmen formuliert, für die bewiesen werden kann, dass eine Lösung eines Optimalsteuerungsproblems das PMP erfüllen muss. Die erhaltenen Resultate sind für die Diskussion der Konvergenzanalyse des SQH Schemas essentiell. Diese Analyse hat zwei Teile. Der erste ist die Wohlgestelltheit des Schemas, was bedeutet, dass alle Schritte des Schemas ausgeführt werden können und ein Ergebnis in endlicher Zeit liefern. Der zweite Teil ist die PMP Konsistenz der Lösung. Das bedeutet, dass die Lösung des SQH Schemas die PMP Bedingungen erfüllt. Im ODE Fall werden die folgenden Resultate erhalten, die die Wohlgestelltheit des Schemas und die PMP Konsistenz der entsprechenden Lösung darlegen. Lemma 7 legt die Existenz eines punktweisen Minimums der erweiterten Hamiltonfunktion dar. Lemma 11 beweist die Existenz eines Gewichtes des quadratischen Strafterms, sodass die Minimierung der entsprechenden erweiterten Hamiltonfunktion zu einer Kontrollaktualisierung führt, die den Wert des Kostenfunktionals verringert. Lemma 12 legt dar, dass das SQH Schema stehen bleibt falls eine Iterierte PMP optimal ist. Satz 13 beweist die Kostenfunktional verringernden Eigenschaften der SQH Steuerungsfunktionsaktualisierung. Das Hauptresultat ist in Satz 14 gegeben, welches die punktweise Konvergenz des SQH Schemas gegen eine PMP konsistente Lösung darlegt. Das SQH-Verfahren wird in diesem ODE Rahmen auf zwei Optimalsteuerungsprobleme angewendet. Das erste ist ein optimales Quantensteuerungsproblem, bei dem gezeigt wird, dass das SQH-Verfahren viel schneller zu einer optimalen Lösung konvergiert als ein globalisiertes Newton-Verfahren. Das zweite Optimalsteuerungsproblem ist ein optimales Tumorbehandlungsproblem mit einem System gekoppelter hochgradig nicht-linearer Zustandsgleichungen, die das Tumorwachstum beschreiben. Es wird gezeigt, dass der Rahmen, in dem die Konvergenz des SQH Schemas bewiesen wird, auf diesen hochgradig nicht-linearen Fall anwendbar ist. Als nächstes wird der Fall von PDE Optimalsteuerungsprobleme betrachtet. Zunächst wird ein allgemeiner Rahmen diskutiert, in dem eine Lösung des entsprechenden Optimalsteuerungsproblem die PMP Bedingungen erfüllt. In diesem Fall werden viele theoretische Abschätzungen in Satz 59 und Satz 64 bewiesen, die insbesondere die essentielle Beschränktheit von Zustands- und Adjungiertenvariablen beweisen. Die Schritte für die Konvergenzanalyse des SQH Schemas sind analog zu denen des ODE Falls und führen zu Satz 27, der die PMP Konsistenz der Lösung, erhalten durch das SQH Schemas, darlegt. Dieser Rahmen wird auf verschiedene elliptische und parabolische Optimalsteuerungsprobleme angewendet, die lineare und bilineare Steuerungsmechanismen beinhalten, genauso wie nicht-lineare Zustandsgleichungen. Darüber hinaus wird das SQH-Verfahren zum Lösen eines zustandsbeschränkten Optimalsteuerungsproblems in einer erweiterten Formulieren diskutiert. Es wird in Satz 30 gezeigt, dass wenn man das Gewicht des Erweiterungsterms, der die Verletzung der Zustandsbeschränkung bestraft, erhöht, das Maß dieser Zustandsbeschränkungsverletzung durch die entsprechende Lösung gegen null konvergiert. Weiterhin wird ein Optimalsteuerungsproblem mit einem nicht-glatten L\(^1\)-Zielverfolgungsterm und einer nicht-glatten Zustandsgleichung untersucht. Für diesen Zweck wird eine adjungierte Gleichung definiert und das SQHVerfahren wird benutzt um das entsprechende Optimalsteuerungsproblem zu lösen. Der letzte Teil dieser Dissertation ist einer Klasse von FP Modellen gewidmet, die auf bestimmte stochastische Prozesse bezogen sind. Die Diskussion beginnt mit dem Fokus auf Random Walks bei dem auch Sprünge mit enthalten sind. Dieser Rahmen erlaubt die Herleitung eines diskreten FP Modells, das einem kontinuierlichen FP Modell mit Sprüngen und Randbedingungen entspricht, die sich zwischen absorbierend bis komplett reflektierend bewegen. Diese Diskussion erlaubt die Betrachtung der Driftsteuerung, die aus einer anisotropen Wahrscheinlichkeit für die Schritte des Random Walks resultiert. Danach werden zwei Drift-Diffusionsprozesse und die entsprechenden FP Modelle mit zwei verschiedenen Steuerungsstrategien für ein Optimalsteuerungsproblem mit Erwartungswertfunktional betrachtet. In der ersten Strategie hängen die Steuerungsfunktionen von der Zeit ab und in der zweiten hängen die Steuerungsfunktionen von Ort und Zeit ab. In beiden Fällen wird eine Lösung zum entsprechendem Optimalsteuerungsproblem mit den PMP Bedingungen charakterisiert, dargestellt in Satz 48 und Satz 49. Die Wohlgestelltheit des SQH Schemas ist in beiden Fällen gezeigt und weitere Bedingungen, die die Konvergenz des SQH Schemas zu einer PMP konsistenten Lösung sicherstellen, werden diskutiert. Der Fall einer Ort und Zeit abhängigen Steuerungsstrategie führt auf eine spezielle Struktur der entsprechenden PMP Bedingungen, die in einem weiteren Lösungsverfahren ausgenutzt werden, dem sogenannten direkten Hamiltonfunktionsverfahren (DH). KW - Optimale Kontrolle KW - Scheme for solving optimal control problems KW - Non-smooth optimal control KW - Pontryagin maximum principle KW - Sequential quadratic Hamiltonian scheme Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-182170 ER - TY - THES A1 - Breitenbach, Tim T1 - A mathematical optimal control based approach to pharmacological modulation with regulatory networks and external stimuli T1 - Ein auf mathematischer Optimalkontrolle basierender Ansatz für pharmakologische Modulation mit regulatorischen Netzwerken und externen Stimuli N2 - In this work models for molecular networks consisting of ordinary differential equations are extended by terms that include the interaction of the corresponding molecular network with the environment that the molecular network is embedded in. These terms model the effects of the external stimuli on the molecular network. The usability of this extension is demonstrated with a model of a circadian clock that is extended with certain terms and reproduces data from several experiments at the same time. Once the model including external stimuli is set up, a framework is developed in order to calculate external stimuli that have a predefined desired effect on the molecular network. For this purpose the task of finding appropriate external stimuli is formulated as a mathematical optimal control problem for which in order to solve it a lot of mathematical methods are available. Several methods are discussed and worked out in order to calculate a solution for the corresponding optimal control problem. The application of the framework to find pharmacological intervention points or effective drug combinations is pointed out and discussed. Furthermore the framework is related to existing network analysis tools and their combination for network analysis in order to find dedicated external stimuli is discussed. The total framework is verified with biological examples by comparing the calculated results with data from literature. For this purpose platelet aggregation is investigated based on a corresponding gene regulatory network and associated receptors are detected. Furthermore a transition from one to another type of T-helper cell is analyzed in a tumor setting where missing agents are calculated to induce the corresponding switch in vitro. Next a gene regulatory network of a myocardiocyte is investigated where it is shown how the presented framework can be used to compare different treatment strategies with respect to their beneficial effects and side effects quantitatively. Moreover a constitutively activated signaling pathway, which thus causes maleficent effects, is modeled and intervention points with corresponding treatment strategies are determined that steer the gene regulatory network from a pathological expression pattern to physiological one again. N2 - In dieser Arbeit werden Modelle für molekulare Netzwerke bestehend aus gewöhnlichen Differentialgleichungen durch Terme erweitert, die die Wechselwirkung zwischen dem entsprechenden molekularen Netzwerk und der Umgebung berücksichtigen, in die das molekulare Netzwerk eingebettet ist. Diese Terme modellieren die Effekte von externen Stimuli auf das molekulare Netzwerk. Die Nutzbarkeit dieser Erweiterung wird mit einem Modell der circadianen Uhr demonstriert, das mit gewissen Termen erweitert wird und Daten von mehreren verschiedenen Experimenten zugleich reproduziert. Sobald das Modell einschließlich der externen Stimuli aufgestellt ist, wird eine Grundstruktur entwickelt um externe Stimuli zu berechnen, die einen gewünschten vordefinierte Effekt auf das molekulare Netzwerk haben. Zu diesem Zweck wird die Aufgabe, geeignete externe Stimuli zu finden, als ein mathematisches optimales Steuerungsproblem formuliert, für welches, um es zu lösen, viele mathematische Methoden zur Verfügung stehen. Verschiedene Methoden werden diskutiert und ausgearbeitet um eine Lösung für das entsprechende optimale Steuerungsproblem zu berechnen. Auf die Anwendung dieser Grundstruktur pharmakologische Interventionspunkte oder effektive Wirkstoffkombinationen zu finden, wird hingewiesen und diese diskutiert. Weiterhin wird diese Grundstruktur in Bezug zu existierenden Netzwerkanalysewerkzeugen gesetzt und ihre Kombination für die Netzwerkanalyse diskutiert um zweckbestimmte externe Stimuli zu finden. Die gesamte Grundstruktur wird mit biologischen Beispielen verifiziert, indem man die berechneten Ergebnisse mit Daten aus der Literatur vergleicht. Zu diesem Zweck wird die Blutplättchenaggregation untersucht basierend auf einem entsprechenden genregulatorischen Netzwerk und damit assoziierte Rezeptoren werden detektiert. Weiterhin wird ein Wechsel von einem T-Helfer Zelltyp in einen anderen in einer Tumorumgebung analysiert, wobei fehlende Agenzien berechnet werden um den entsprechenden Wechsel in vitro zu induzieren. Als nächstes wird ein genregulatorisches Netzwerk eines Myokardiozyten untersucht, wobei gezeigt wird wie die präsentierte Grundstruktur genutzt werden kann um verschiedene Behandlungsstrategien in Bezug auf ihre nutzbringenden Wirkungen und Nebenwirkungen quantitativ zu vergleichen. Darüber hinaus wird ein konstitutiv aktivierter Signalweg, der deshalb unerwünschte Effekte verursacht, modelliert und Interventionspunkte mit entsprechenden Behandlungsstrategien werden bestimmt, die das genregulatorische Netzwerk wieder von einem pathologischen Expressionsmuster zu einem physiologischen steuern. KW - Bioinformatik KW - systematic drug targeting KW - optimal drug combination KW - disease modelling KW - external stimuli KW - intervention point analyzing KW - Molekülsystem KW - Reiz Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174368 ER -