TY - RPRT A1 - Großmann, Marcel A1 - Le, Duy Thanh T1 - Visualization of Network Emulation Enabled by Kathará T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - In network research, reproducibility of experiments is not always easy to achieve. Infrastructures are cumbersome to set up or are not available due to vendor-specific devices. Emulators try to overcome those issues to a given extent and are available in different service models. Unfortunately, the usability of emulators requires time-consuming efforts and a deep understanding of their functionality. At first, we analyze to which extent currently available open-source emulators support network configurations and how user-friendly they are. With these insights, we describe, how an ease-to-use emulator is implemented and may run as a Network Emulator as a Service (NEaaS). Therefore, virtualization plays a major role in order to deploy a NEaaS based on Kathará. KW - Network Emulator KW - Visualized Kathará KW - Containerization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322189 ER - TY - RPRT A1 - Dworzak, Manuel A1 - Großmann, Marcel A1 - Le, Duy Thanh T1 - Federated Learning for Service Placement in Fog and Edge Computing T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - Service orchestration requires enormous attention and is a struggle nowadays. Of course, virtualization provides a base level of abstraction for services to be deployable on a lot of infrastructures. With container virtualization, the trend to migrate applications to a micro-services level in order to be executable in Fog and Edge Computing environments increases manageability and maintenance efforts rapidly. Similarly, network virtualization adds effort to calibrate IP flows for Software-Defined Networks and eventually route it by means of Network Function Virtualization. Nevertheless, there are concepts like MAPE-K to support micro-service distribution in next-generation cloud and network environments. We want to explore, how a service distribution can be improved by adopting machine learning concepts for infrastructure or service changes. Therefore, we show how federated machine learning is integrated into a cloud-to-fog-continuum without burdening single nodes. KW - fog computing KW - SDN KW - orchestration KW - federated learning Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322193 ER - TY - RPRT A1 - Großmann, Marcel A1 - Homeyer, Tobias T1 - Emulation of Multipath Transmissions in P4 Networks with Kathará T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - Packets sent over a network can either get lost or reach their destination. Protocols like TCP try to solve this problem by resending the lost packets. However, retransmissions consume a lot of time and are cumbersome for the transmission of critical data. Multipath solutions are quite common to address this reliability issue and are available on almost every layer of the ISO/OSI model. We propose a solution based on a P4 network to duplicate packets in order to send them to their destination via multiple routes. The last network hop ensures that only a single copy of the traffic is further forwarded to its destination by adopting a concept similar to Bloom filters. Besides, if fast delivery is requested we provide a P4 prototype, which randomly forwards the packets over different transmission paths. For reproducibility, we implement our approach in a container-based network emulation system called Kathará. KW - P4 KW - multipath KW - emulation KW - Kathará Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322095 ER - TY - RPRT A1 - Le, Duy Thanh A1 - Großmann, Marcel A1 - Krieger, Udo R. T1 - Cloudless Resource Monitoring in a Fog Computing System Enabled by an SDN/NFV Infrastructure T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Today’s advanced Internet-of-Things applications raise technical challenges on cloud, edge, and fog computing. The design of an efficient, virtualized, context-aware, self-configuring orchestration system of a fog computing system constitutes a major development effort within this very innovative area of research. In this paper we describe the architecture and relevant implementation aspects of a cloudless resource monitoring system interworking with an SDN/NFV infrastructure. It realizes the basic monitoring component of the fundamental MAPE-K principles employed in autonomic computing. Here we present the hierarchical layering and functionality within the underlying fog nodes to generate a working prototype of an intelligent, self-managed orchestrator for advanced IoT applications and services. The latter system has the capability to monitor automatically various performance aspects of the resource allocation among multiple hosts of a fog computing system interconnected by SDN. KW - Datennetz KW - fog computing KW - SDN/NVF KW - container virtualization KW - autonomic orchestration KW - docker Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280723 ER -