TY - JOUR A1 - Leonhardt, Sara D. A1 - Schmitt, Thomas A1 - Blüthgen, Nico T1 - Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini) N2 - The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees’ body surfaces. To unravel the origin of the bees’ complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific ‘‘filtering’’ of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces fromdifferent species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees’ surfaces contain a much higher chemodiversity than other hymenopterans. KW - Stachellose Biene Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69035 ER - TY - JOUR A1 - Frank, Erik T. A1 - Kesner, Lucie A1 - Liberti, Joanito A1 - Helleu, Quentin A1 - LeBoeuf, Adria C. A1 - Dascalu, Andrei A1 - Sponsler, Douglas B. A1 - Azuma, Fumika A1 - Economo, Evan P. A1 - Waridel, Patrice A1 - Engel, Philipp A1 - Schmitt, Thomas A1 - Keller, Laurent T1 - Targeted treatment of injured nestmates with antimicrobial compounds in an ant society JF - Nature Communications N2 - Infected wounds pose a major mortality risk in animals. Injuries are common in the ant Megaponera analis, which raids pugnacious prey. Here we show that M. analis can determine when wounds are infected and treat them accordingly. By applying a variety of antimicrobial compounds and proteins secreted from the metapleural gland to infected wounds, workers reduce the mortality of infected individuals by 90%. Chemical analyses showed that wound infection is associated with specific changes in the cuticular hydrocarbon profile, thereby likely allowing nestmates to diagnose the infection state of injured individuals and apply the appropriate antimicrobial treatment. This study demonstrates that M. analis ant societies use antimicrobial compounds produced in the metapleural glands to treat infected wounds and reduce nestmate mortality. KW - animal behaviour KW - chemical ecology KW - entomology KW - microbial ecology KW - proteomics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358081 VL - 14 ER - TY - JOUR A1 - Streinzer, Martin A1 - Chakravorty, Jharna A1 - Neumayer, Johann A1 - Megu, Karsing A1 - Narah, Jaya A1 - Schmitt, Thomas A1 - Bharti, Himender A1 - Spaethe, Johannes A1 - Brockmann, Axel T1 - Species composition and elevational distribution of bumble bees (Hymenoptera, Apidae, Bombus Latreille) in the East Himalaya, Arunachal Pradesh, India JF - ZooKeys N2 - The East Himalaya is one of the world’s most biodiverse ecosystems. However, very little is known about the abundance and distribution of many plant and animal taxa in this region. Bumble bees are a group of cold-adapted and high elevation insects that fulfil an important ecological and economical function as pollinators of wild and agricultural flowering plants and crops. The Himalayan mountain range provides ample suitable habitats for bumble bees. Systematic study of Himalayan bumble bees began a few decades ago and the main focus has centred on the western region, while the eastern part of the mountain range has received little attention and only a few species have been verified. During a three-year survey, more than 700 bumble bee specimens of 21 species were collected in Arunachal Pradesh, the largest of the north-eastern states of India. The material included a range of species that were previously known from a limited number of collected specimens, which highlights the unique character of the East Himalayan ecosystem. Our results are an important first step towards a future assessment of species distribution, threat, and conservation. Clear elevation patterns of species diversity were observed, which raise important questions about the functional adaptations that allow bumble bees to thrive in this particularly moist region in the East Himalaya. KW - Alpine habitats KW - Apidae KW - conservation KW - global change KW - insect collection KW - pollination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201937 VL - 851 ER - TY - JOUR A1 - Drescher, Jochen A1 - Bluethgen, Nico A1 - Schmitt, Thomas A1 - Buehler, Jana A1 - Feldhaar, Heike T1 - Societies Drifting Apart? Behavioural, Genetic and Chemical Differentiation between Supercolonies in the Yellow Crazy Ant Anoplolepis gracilipes N2 - Background: In populations of most social insects, gene flow is maintained through mating between reproductive individuals from different colonies in periodic nuptial flights followed by dispersal of the fertilized foundresses. Some ant species, however, form large polygynous supercolonies, in which mating takes place within the maternal nest (intranidal mating) and fertilized queens disperse within or along the boundary of the supercolony, leading to supercolony growth (colony budding). As a consequence, gene flow is largely confined within supercolonies. Over time, such supercolonies may diverge genetically and, thus, also in recognition cues (cuticular hydrocarbons, CHC’s) by a combination of genetic drift and accumulation of colony-specific, neutral mutations. Methodology/Principal Findings: We tested this hypothesis for six supercolonies of the invasive ant Anoplolepis gracilipes in north-east Borneo. Within supercolonies, workers from different nests tolerated each other, were closely related and showed highly similar CHC profiles. Between supercolonies, aggression ranged from tolerance to mortal encounters and was negatively correlated with relatedness and CHC profile similarity. Supercolonies were genetically and chemically distinct, with mutually aggressive supercolony pairs sharing only 33.1%617.5% (mean 6 SD) of their alleles across six microsatellite loci and 73.8%611.6% of the compounds in their CHC profile. Moreover, the proportion of alleles that differed between supercolony pairs was positively correlated to the proportion of qualitatively different CHC compounds. These qualitatively differing CHC compounds were found across various substance classes including alkanes, alkenes and mono-, di- and trimethyl-branched alkanes. Conclusions: We conclude that positive feedback between genetic, chemical and behavioural traits may further enhance supercolony differentiation through genetic drift and neutral evolution, and may drive colonies towards different evolutionary pathways, possibly including speciation. KW - Ameisen KW - Anoplolepis gracilipes Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68573 ER - TY - JOUR A1 - Kárpáti, Zsolt A1 - Deutsch, Ferenc A1 - Kiss, Balázs A1 - Schmitt, Thomas T1 - Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii JF - Scientific Reports N2 - Seasonal plasticity in insects is often triggered by temperature and photoperiod changes. When climatic conditions become sub-optimal, insects might undergo reproductive diapause, a form of seasonal plasticity delaying the development of reproductive organs and activities. During the reproductive diapause, the cuticular hydrocarbon (CHC) profile, which covers the insect body surface, might also change to protect insects from desiccation and cold temperature. However, CHCs are often important cues and signals for mate recognition and changes in CHC composition might affect mate recognition. In the present study, we investigated the CHC profile composition and the mating success of Drosophila suzukii in 1- and 5-day-old males and females of summer and winter morphs. CHC compositions differed with age and morphs. However, no significant differences were found between the sexes of the same age and morph. The results of the behavioral assays show that summer morph pairs start to mate earlier in their life, have a shorter mating duration, and have more offspring compared to winter morph pairs. We hypothesize that CHC profiles of winter morphs are adapted to survive winter conditions, potentially at the cost of reduced mate recognition cues. KW - ecology KW - zoology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358095 VL - 13 ER - TY - JOUR A1 - Frank, Erik Thomas A1 - Schmitt, Thomas A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Stiegler, Jonas A1 - Linsenmair, Karl Eduard T1 - Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis JF - Science Advances N2 - Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals. KW - Megaponera analis KW - rescue behavior Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157933 VL - 3 IS - 4 ER - TY - JOUR A1 - Diao, Wenwen A1 - Mousset, Mathilde A1 - Horsburgh, Gavin J. A1 - Vermeulen, Cornelis J. A1 - Johannes, Frank A1 - van de Zande, Louis A1 - Ritchie, Michael G. A1 - Schmitt, Thomas A1 - Beukeboom, Leo W. T1 - Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps JF - G3: Genes Genomes Genetics N2 - A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times, and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities, and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount, depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination, which points at a polygenic architecture of female choice with strong environmental influences. KW - Nasonia courtship KW - female choice KW - sex pheromone KW - QTL analysis KW - speciation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165412 VL - 6 IS - 6 ER - TY - JOUR A1 - Buellesbach, Jan A1 - Diao, Wenwen A1 - Schmitt, Thomas A1 - Beukeboom, Leo W. T1 - Micro‐climate correlations and conserved sexual dimorphism of cuticular hydrocarbons in European populations of the jewel wasp Nasonia vitripennis JF - Ecological Entomology N2 - 1. Protection against desiccation and chemical communication are two fundamental functions of cuticular hydrocarbons (CHCs) in insects. In the parasitoid jewel wasp Nasonia vitripennis (Walker), characterised by a cosmopolitan distribution through largely different environments, CHCs function as universally recognised female sex pheromones. However, CHC uniformity as basis for sexual recognition may conflict with the desiccation protection function, expected to display considerable flexibility through adaptation to different environmental conditions. 2. We compared male and female CHC profiles of N. vitripennis across a wide latitudinal gradient in Europe and correlated their CHC variation with climatic factors associated with desiccation. Additionally, we tested male mate discrimination behaviour between populations to detect potential variations in female sexual attractiveness. 3. Results did not conform to the general expectation that longer, straight‐chain CHCs occur in higher proportions in warmer and drier climates. Instead, unexpected environmental correlations of intermediate chain‐length CHCs (C31) were found exclusively in females, potentially reflecting the different life histories of the sexes in N. vitripennis. 4. Furthermore, we found no indication of population‐specific male mate preference, confirming the stability of female sexual attractiveness, likely conveyed through their CHC profiles. C31 mono‐ and C33 di‐methyl‐branched alkanes were consistently and most strongly associated with sexual dimorphism, suggesting their potential role in encoding the female‐specific sexual signalling function. 5. Our study sheds light on how both adaptive flexibility and conserved sexual attractiveness can potentially be integrated and encoded in CHC profiles of N. vitripennis females across a wide distribution range in Europe. KW - chemical communication KW - climatic factors KW - desiccation resistance KW - sex pheromones KW - sexual dimorphism Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262770 VL - 47 IS - 1 SP - 38 EP - 51 ER - TY - JOUR A1 - Polidori, Carlo A1 - Ballesteros, Yolanda A1 - Wurdack, Mareike A1 - Asís, Josep Daniel A1 - Tormos, José A1 - Baños-Picón, Laura A1 - Schmitt, Thomas T1 - Low host specialization in the cuckoo wasp, Parnopes grandior, weakens chemical mimicry but does not lead to local adaption JF - Insects N2 - Insect brood parasites have evolved a variety of strategies to avoid being detected by their hosts. Few previous studies on cuckoo wasps (Hymenoptera: Chrysididae), which are natural enemies of solitary wasps and bees, have shown that chemical mimicry, i.e., the biosynthesis of cuticular hydrocarbons (CHC) that match the host profile, evolved in several species. However, mimicry was not detected in all investigated host-parasite pairs. The effect of host range as a second factor that may play a role in evolution of mimicry has been neglected, since all previous studies were carried out on host specialists and at nesting sites where only one host species occurred. Here we studied the cuckoo wasp Parnopes grandior, which attacks many digger wasp species of the genus Bembix (Hymenoptera: Crabronidae). Given its weak host specialization, P. grandior may either locally adapt by increasing mimicry precision to only one of the sympatric hosts or it may evolve chemical insignificance by reducing the CHC profile complexity and/or CHCs amounts. At a study site harbouring three host species, we found evidence for a weak but appreciable chemical deception strategy in P. grandior. Indeed, the CHC profile of P. grandior was more similar to all sympatric Bembix species than to a non-host wasp species belonging to the same tribe as Bembix. Furthermore, P. grandior CHC profile was equally distant to all the hosts' CHC profiles, thus not pointing towards local adaptation of the CHC profile to one of the hosts' profile. We conducted behavioural assays suggesting that such weak mimicry is sufficient to reduce host aggression, even in absence of an insignificance strategy, which was not detected. Hence, we finally concluded that host range may indeed play a role in shaping the level of chemical mimicry in cuckoo wasps. KW - Chrysididae KW - Bembix KW - chemical mimicry KW - cuticular hydrocarbons Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200651 SN - 2075-4450 VL - 11 IS - 2 ER - TY - JOUR A1 - Hartke, Juliane A1 - Waldvogel, Ann‐Marie A1 - Sprenger, Philipp P. A1 - Schmitt, Thomas A1 - Menzel, Florian A1 - Pfenninger, Markus A1 - Feldmeyer, Barbara T1 - Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species JF - Journal of Evolutionary Biology N2 - Species living in sympatry and sharing a similar niche often express parallel phenotypes as a response to similar selection pressures. The degree of parallelism within underlying genomic levels is often unexplored, but can give insight into the mechanisms of natural selection and adaptation. Here, we use multi‐dimensional genomic associations to assess the basis of local and climate adaptation in two sympatric, cryptic Crematogaster levior ant species along a climate gradient. Additionally, we investigate the genomic basis of chemical communication in both species. Communication in insects is mainly mediated by cuticular hydrocarbons (CHCs), which also protect against water loss and, hence, are subject to changes via environmental acclimation or adaptation. The combination of environmental and chemical association analyses based on genome‐wide Pool‐Seq data allowed us to identify single nucleotide polymorphisms (SNPs) associated with climate and with chemical differences. Within species, CHC changes as a response to climate seem to be driven by phenotypic plasticity, since there is no overlap between climate‐ and CHC‐associated SNPs. The only exception is the odorant receptor OR22c, which may be a candidate for population‐specific CHC recognition in one of the species. Within both species, climate is significantly correlated with CHC differences, as well as to allele frequency differences. However, associated candidate SNPs, genes and functions are largely species‐specific and we find evidence for minimal parallel evolution only on the level of genomic regions (J = 0.04). This highlights that even closely related species may follow divergent evolutionary trajectories when expressing similar adaptive phenotypes. KW - BayPass KW - environmental association analysis KW - Formicidae KW - mutualism KW - parallel evolution KW - population divergence Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228355 VL - 34 IS - 6 SP - 937 EP - 952 ER - TY - JOUR A1 - Maihoff, Fabienne A1 - Bohlke, Kyte A1 - Brockmann, Axel A1 - Schmitt, Thomas T1 - Increased complexity of worker CHC profiles in Apis dorsata correlates with nesting ecology JF - PLoS ONE N2 - Cuticular hydrocarbons (CHC) are known to serve as discrimination cues and will trigger defence behaviour in a plethora of eusocial insects. However, little is known how about nestmate recognition ability selects for CHC diversification. In this study we investigate differences in CHC composition of four major honey bee species with respect to the differences in their nesting behavior. In contrast to A. mellifera, A. cerana and A. florea, the giant honey bee A. dorsata prefers to build their nests in aggregations with very small spatial distances between nests, which increases the probability of intrusions. Thus, A. dorsata exhibits a particularly challenging nesting behavior which we hypothesize should be accompanied with an improved nestmate recognition system. Comparative analyses of the worker CHC profiles indicate that A. dorsata workers exhibit a unique and more complex CHC profile than the other three honey bee species. This increased complexity is likely based on a developmental process that retains the capability to synthesize methyl-branched hydrocarbons as adults. Furthermore, two sets of behavioral experiments provide evidence that A. dorsata shows an improved nestmate discrimination ability compared to the phylogenetically ancestral A. florea, which is also open-nesting but does not form nest aggregations. The results of our study suggest that ecological traits like nesting in aggregation might be able to drive CHC profile diversification even in closely related insect species. KW - Apis dorsata KW - cuticular hydrocarbons KW - nesting Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301353 VL - 17 IS - 7 ER - TY - JOUR A1 - Strube-Bloss, Martin F. A1 - Brown, Austin A1 - Spaethe, Johannes A1 - Schmitt, Thomas A1 - Rössler, Wolfgang T1 - Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris JF - PLoS One N2 - To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a ‘dance’ behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors. KW - instinct KW - plant-insect interactions KW - pheromones KW - bumblebees KW - odorants KW - principal component analysis KW - neurons KW - action potentials Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125875 VL - 10 IS - 9 ER - TY - JOUR A1 - Castillo, Ruth A1 - Wurdack, Mareike A1 - Pauli, Thomas A1 - Keller, Alexander A1 - Feldhaar, Heike A1 - Polidori, Carlo A1 - Niehuis, Oliver A1 - Schmitt, Thomas T1 - Evidence for a chemical arms race between cuckoo wasps of the genus Hedychrum and their distantly related host apoid wasps JF - BMC Ecology and Evolution N2 - Background Brood parasites can exert strong selection pressure on their hosts. Many brood parasites escape their detection by mimicking sensory cues of their hosts. However, there is little evidence whether or not the hosts are able to escape the parasites’ mimicry by changing these cues. We addressed this question by analyzing cuticular hydrocarbon (CHC) profiles of Cerceris and Philanthus wasps and their brood parasites, cuckoo wasps mimicking the CHC profiles of their hosts. Some of these hosts use hydrocarbons to preserve their prey against fungal infestation and thus, they cannot significantly change their CHC composition in response to chemical mimicry by Hedychrum brood parasites. Results We found that the CHC overlap between brood parasites and their hosts was lower in case of host wasps not preserving their prey than in case of prey-preserving host wasps, whose CHC evolution is constrained. Furthermore, the CHC profiles in non-preserving host wasps is more strongly diversified in females than in males, thus in the sex that is chemically mimicked by brood parasites. Conclusion Our results provide evidence for a chemical arms race between those hosts that are liberated from stabilizing selection on their chemical template and their parasites. KW - chemical mimicry KW - philanthidae KW - hymenoptera KW - evolutionary arms race KW - cuticular hydrocarbons KW - chrysididae Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301289 VL - 22 IS - 1 ER - TY - JOUR A1 - Otieno, Mark A1 - Karpati, Zsolt A1 - Peters, Marcell K. A1 - Duque, Laura A1 - Schmitt, Thomas A1 - Steffan-Dewenter, Ingolf T1 - Elevated ozone and carbon dioxide affects the composition of volatile organic compounds emitted by Vicia faba (L.) and visitation by European orchard bee (Osmia cornuta) JF - PLoS One N2 - Recent studies link increased ozone (O\(_3\)) and carbon dioxide (CO\(_2\)) levels to alteration of plant performance and plant-herbivore interactions, but their interactive effects on plant-pollinator interactions are little understood. Extra floral nectaries (EFNs) are essential organs used by some plants for stimulating defense against herbivory and for the attraction of insect pollinators, e.g., bees. The factors driving the interactions between bees and plants regarding the visitation of bees to EFNs are poorly understood, especially in the face of global change driven by greenhouse gases. Here, we experimentally tested whether elevated levels of O\(_3\) and CO\(_2\) individually and interactively alter the emission of Volatile Organic Compound (VOC) profiles in the field bean plant (Vicia faba, L., Fabaceae), EFN nectar production and EFN visitation by the European orchard bee (Osmia cornuta, Latreille, Megachilidae). Our results showed that O\(_3\) alone had significant negative effects on the blends of VOCs emitted while the treatment with elevated CO\(_2\) alone did not differ from the control. Furthermore, as with O\(_3\) alone, the mixture of O\(_3\) and CO\(_2\) also had a significant difference in the VOCs’ profile. O\(_3\) exposure was also linked to reduced nectar volume and had a negative impact on EFN visitation by bees. Increased CO\(_2\) level, on the other hand, had a positive impact on bee visits. Our results add to the knowledge of the interactive effects of O\(_3\) and CO\(_2\) on plant volatiles emitted by Vicia faba and bee responses. As greenhouse gas levels continue to rise globally, it is important to take these findings into consideration to better prepare for changes in plant-insect interactions. KW - Volatile Organic Compound (VOC) KW - Vicia faba (L.) KW - European orchard bee (Osmia cornuta) KW - carbon dioxide (CO2) KW - ozone (O3) KW - bees KW - flowering plants KW - plant-insect interactions KW - flowers KW - plant physiology KW - plant-herbivore interactions Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350020 VL - 18 IS - 4 ER - TY - JOUR A1 - Sprenger, Philipp P. A1 - Müsse, Christian A1 - Hartke, Juliane A1 - Feldmeyer, Barbara A1 - Schmitt, Thomas A1 - Gebauer, Gerhard A1 - Menzel, Florian T1 - Dinner with the roommates: trophic niche differentiation and competition in a mutualistic ant‐ant association JF - Ecological Entomology N2 - 1. The potential for competition is highest among species in close association. Despite net benefits for both parties, mutualisms can involve costs, including food competition. This might be true for the two neotropical ants Camponotus femoratus and Crematogaster levior, which share the same nest in a presumably mutualistic association (parabiosis). 2. While each nest involves one Crematogaster and one Camponotus partner, both taxa were recently found to comprise two cryptic species that show no partner preferences and seem ecologically similar. Since these cryptic species often occur in close sympatry, they might need to partition their niches to avoid competitive exclusion. 3. Here, we investigated first, is there interference competition between parabiotic Camponotus and Crematogaster, and do they prefer different food sources under competition? And second, is there trophic niche partitioning between the cryptic species of either genus? 4. Using cafeteria experiments, neutral lipid fatty acid and stable isotope analyses, we found evidence for interference competition, but also trophic niche partitioning between Camponotus and Crematogaster. Both preferred protein‐ and carbohydrate‐rich baits, but at protein‐rich baits Ca. femoratus displaced Cr. levior over time, suggesting a potential discovery‐dominance trade‐off between parabiotic partners. Only limited evidence was found for trophic differentiation between the cryptic species of each genus. 5. Although we cannot exclude differentiation in other niche dimensions, we argue that neutral dynamics might mediate the coexistence of cryptic species. This model system is highly suitable for further studies of the maintenance of species diversity and the role of mutualisms in promoting species coexistence. KW - Cryptic species KW - Formicidae KW - neutral theory KW - niche partitioning KW - nutrition KW - parabiosis KW - species coexistence mechanism KW - trade‐offs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228215 VL - 46 IS - 3 SP - 562 EP - 572 ER - TY - JOUR A1 - Buellesbach, Jan A1 - Vetter, Sebastian G. A1 - Schmitt, Thomas T1 - Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps JF - Frontiers in Zoology N2 - Background Cuticular hydrocarbons (CHC) have been documented to play crucial roles as species- and sex-specific cues in the chemical communication systems of a wide variety of insects. However, whether they are sufficient by themselves as the sole cue triggering sexual behavior as well as preference of con- over heterospecific mating partners is rarely assessed. We conducted behavioral assays in three representative species of parasitoid wasps (Hymenoptera: Pteromalidae) to determine their reliance on CHC as species-specific sexual signaling cues. Results We found a surprising degree of either unspecific or insufficient sexual signaling when CHC are singled out as recognition cues. Most strikingly, the cosmopolitan species Nasonia vitripennis, expected to experience enhanced selection pressure to discriminate against other co-occurring parasitoids, did not discriminate against CHC of a partially sympatric species from another genus, Trichomalopsis sarcophagae. Focusing on the latter species, in turn, it became apparent that CHC are even insufficient as the sole cue triggering conspecific sexual behavior, hinting at the requirement of additional, synergistic sexual cues particularly important in this species. Finally, in the phylogenetically and chemically most divergent species Muscidifurax uniraptor, we intriguingly found both CHC-based sexual signaling as well as species discrimination behavior intact although this species is naturally parthenogenetic with sexual reproduction only occurring under laboratory conditions. Conclusions Our findings implicate a discrepancy in the reliance on and specificity of CHC as sexual cues in our tested parasitioid wasps. CHC profiles were not sufficient for unambiguous discrimination and preference behavior, as demonstrated by clear cross-attraction between some of our tested wasp genera. Moreover, we could show that only in T. sarcophagae, additional behavioral cues need to be present for triggering natural mating behavior, hinting at an interesting shift in signaling hierarchy in this particular species. This demonstrates the importance of integrating multiple, potentially complementary signaling modalities in future studies for a better understanding of their individual contributions to natural sexual communication behavior. KW - chemical communication KW - assortative mating KW - mate recognition KW - prezygotic reproductive isolation KW - speciation KW - Nasonia KW - Trichomalopsis KW - Muscidifurax KW - Pteromalidae KW - Hymenoptera Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221702 VL - 15 ER - TY - JOUR A1 - Christopher D., Pull A1 - Ugelvig, Line V. A1 - Wiesenhofer, Florian A1 - Anna V., Grasse A1 - Tragust, Simon A1 - Schmitt, Thomas A1 - Brown, Mark JF A1 - Cremer, Sylvia T1 - Destructive disinfection of infected brood prevents systemic disease spread in ant colonies JF - eLIFE N2 - In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogens non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation. KW - division of labor KW - Fungal cell-walls KW - Leaf cutting ants KW - Metarhizium anisopliae KW - Beauveria bassiana Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223728 VL - 7 ER - TY - JOUR A1 - Moris, Victoria C. A1 - Christmann, Katharina A1 - Wirtgen, Aline A1 - Belokobylskij, Sergey A. A1 - Berg, Alexander A1 - Liebig, Wolf-Harald A1 - Soon, Villu A1 - Baur, Hannes A1 - Schmitt, Thomas A1 - Niehuis, Oliver T1 - Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes JF - Chemoecology N2 - The mason wasp Odynerus spinipes shows an exceptional case of intrasexual cuticular hydrocarbon (CHC) profile dimorphism. Females of this species display one of two CHC profiles (chemotypes) that differ qualitatively and quantitatively from each other. The ratio of the two chemotypes was previously shown to be close to 1:1 at three sites in Southern Germany, which might not be representative given the Palearctic distribution of the species. To infer the frequency of the two chemotypes across the entire distributional range of the species, we analyzed with GC–MS the CHC profile of 1042 dry-mounted specimens stored in private and museum collections. We complemented our sampling by including 324 samples collected and preserved specifically for studying their CHCs. We were capable of reliably identifying the chemotypes in 91% of dry-mounted samples, some of which collected almost 200 years ago. We found both chemotypes to occur in the Far East, the presumed glacial refuge of the species, and their frequency to differ considerably between sites and geographic regions. The geographic structure in the chemotype frequencies could be the result of differential selection regimes and/or different dispersal routes during the colonization of the Western Palearctic. The presented data pave the route for disentangling these factors by providing information where to geographically sample O. spinipes for population genetic analyses. They also form the much-needed basis for future studies aiming to understand the evolutionary and geographic origin as well as the genetics of the astounding CHC profile dimorphism that O. spinipes females exhibit. KW - cuticular hydrocarbons KW - chemotypes KW - dry-mounted samples KW - collections KW - distribution Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-306999 SN - 0937-7409 SN - 1423-0445 VL - 31 IS - 5 ER - TY - JOUR A1 - Maihoff, Fabienne A1 - Sahler, Simone A1 - Schoger, Simon A1 - Brenzinger, Kristof A1 - Kallnik, Katharina A1 - Sauer, Nikki A1 - Bofinger, Lukas A1 - Schmitt, Thomas A1 - Nooten, Sabine S. A1 - Classen, Alice T1 - Cuticular hydrocarbons of alpine bumble bees (Hymenoptera: Bombus) are species-specific, but show little evidence of elevation-related climate adaptation JF - Frontiers in Ecology and Evolution N2 - Alpine bumble bees are the most important pollinators in temperate mountain ecosystems. Although they are used to encounter small-scale successions of very different climates in the mountains, many species respond sensitively to climatic changes, reflected in spatial range shifts and declining populations worldwide. Cuticular hydrocarbons (CHCs) mediate climate adaptation in some insects. However, whether they predict the elevational niche of bumble bees or their responses to climatic changes remains poorly understood. Here, we used three different approaches to study the role of bumble bees’ CHCs in the context of climate adaptation: using a 1,300 m elevational gradient, we first investigated whether the overall composition of CHCs, and two potentially climate-associated chemical traits (proportion of saturated components, mean chain length) on the cuticle of six bumble bee species were linked to the species’ elevational niches. We then analyzed intraspecific variation in CHCs of Bombus pascuorum along the elevational gradient and tested whether these traits respond to temperature. Finally, we used a field translocation experiment to test whether CHCs of Bombus lucorum workers change, when translocated from the foothill of a cool and wet mountain region to (a) higher elevations, and (b) a warm and dry region. Overall, the six species showed distinctive, species-specific CHC profiles. We found inter- and intraspecific variation in the composition of CHCs and in chemical traits along the elevational gradient, but no link to the elevational distribution of species and individuals. According to our expectations, bumble bees translocated to a warm and dry region tended to express longer CHC chains than bumble bees translocated to cool and wet foothills, which could reflect an acclimatization to regional climate. However, chain lengths did not further decrease systematically along the elevational gradient, suggesting that other factors than temperature also shape chain lengths in CHC profiles. We conclude that in alpine bumble bees, CHC profiles and traits respond at best secondarily to the climate conditions tested in this study. While the functional role of species-specific CHC profiles in bumble bees remains elusive, limited plasticity in this trait could restrict species’ ability to adapt to climatic changes. KW - pollinators KW - altitudinal gradient KW - cuticular hydrocarbon KW - desiccation KW - mountain KW - global change KW - translocation experiment KW - drought stress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304420 SN - 2296-701X VL - 11 ER - TY - JOUR A1 - Mayr, Antonia V. A1 - Keller, Alexander A1 - Peters, Marcell K. A1 - Grimmer, Gudrun A1 - Krischke, Beate A1 - Geyer, Mareen A1 - Schmitt, Thomas A1 - Steffan‐Dewenter, Ingolf T1 - Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient JF - Ecology and Evolution N2 - Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low‐quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro. KW - COI KW - cuticular chemistry KW - elevational gradient KW - Halictidae KW - microbiome metabarcoding KW - pollen metabarcoding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238853 VL - 11 IS - 12 SP - 7700 EP - 7712 ER -