TY - JOUR A1 - Lohse, M. J. A1 - Klotz, K.-N. A1 - Ukena, D. A1 - Schwabe, U. T1 - Characterization of \([^3H]\)Phenobarbital Binding to Rat Brain Membranes JF - Neuroscience Letters N2 - The binding of \([^3H]\)phenobarbital to rat brain membranes was studied in order to determine its characteristics and specificity. The binding reaction was rapid and occurred at sites of low affinity. \((K_d = 700 μM)\) and very high density \((B_{max} = 2.7 nmoll/mg protein)\). It was unaffected by temperature changes from O°C to 95°C and was maximal at pH 5. Detergents in low concentrations markedly decreased the binding, apparently without solubilizing the binding sites. It is concluded that the binding of \([^3H]\) phenobarbital is a rather non-specific interaction with the plasma membrane. KW - barbiturates KW - radioligand binding KW - rat brain membranes Y1 - 1984 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127894 VL - 52 ER - TY - CHAP A1 - Lohse, M. J. A1 - Klotz, K.-N. A1 - Schwabe, U. A1 - Christalli, G. A1 - Vittori, S. A1 - Grifantini, M. T1 - Pharmacology and Biochemistry of Adenosine Receptors N2 - Adenosine modulates a variety of physiological functions via membrane-bound receptors. These receptors couple via G proteins to adenylate cyclase and K+channels. The A1 subtype mediates an inhibition of adenylate cyclase and an opening of K+-channels, and the A2 subtype a Stimulation of adenylate cyclase. Both subtypes have been characterized by radioligand binding. This has facilitated the development of agonists and antagonists with more than 1000-fold A1 selectivity. A1-selective photoaffinity labels have been used for the biochemical characterization of A1 receptors and the study of their coupling to adenylate cyclase. Such selective ligands allow the analysis of the involvement of adenosine receptors in physiological functions. Selective interference with adenosine receptors provides new pharmacological tools and eventually new therapeutic approaches to a number of pathophysiological states. KW - Adenosinrezeptor KW - Pharmakologie KW - Toxikologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86251 ER - TY - CHAP A1 - Spielmann, W. S. A1 - Arend, L. J. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Adenosine control of the renal Collecting tubule: receptors and signaling N2 - No abstract available. KW - Adenosin Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86129 ER - TY - CHAP A1 - Spielmann, W.-S. A1 - Arend, L. J. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Adenosine receptors and singnaling in the kidney N2 - No abstract available. KW - Adenosinrezeptor KW - Niere Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86114 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Keil, R. A1 - Zimmer, F. J. A1 - Schwabe, U. T1 - Guanine nucleotide effects on 8-cyclopentyl-1,3-[\(^3\)H]dipropylxanthine binding to membrane-bound and solubilized A\(_1\) adenosine receptors of rat brain N2 - The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[\(^3\)H]dipropylxanthine [\(^3\)H]DPCPX), a highly selective A\(_1\) adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A\(_1\) receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [\(^3\)H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [\(^3\)H]DPCPX bindingwas the same as for guanine nuc1eotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., G\(_i\), in the regulation of antagonist binding is suggested. This was confirmed by inactivation ofGi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [\(^3\)H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A\(-1\) receptors for [\(^3\)H]DPCPX but by an increased Bmu value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when rnost receptors are in a high-affinity state for agonists, only a few receptors are labeled by [\(^3\)H]DPCPX. It is suggested that [\(^3\)H]DPCPX binding is inhibited when receptors are coupled to G\(_i\). Therefore, uncoupling of A\(_1\) receptors from G\(_i\) by guanine nucleotides or by inactivation of G\(_i\) with NEM results in an increased antagonist binding. Key Words: Adenosine receptors-8 -Cyclopentyl-1,3-eH]dipropylxanthine-Antagenist binding-Guanine nucleotide effects. Klotz K.-N. et al. Guanine nucleotide etfects on 8-cyclopentyl-1 ,3-eH]dipropylxanthine binding to membrane-bound and solubilized A1 adenosine receptors of rat brain. J. Neurochem. 54, 1988-1994 (1990). KW - Toxikologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60369 ER - TY - JOUR A1 - Lohse, M. J. A1 - Maurer, K. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Synergistic effects of calcium-mobilizing agents and adenosine on histamine release from rat peritoneal mast cells N2 - 1 Adenosine and its metabolically stable analogue N.etbyl-carboxamidoadenosine (NECA) enhance histamine release from rat peritoneal mast cells when tbese are stimulated by calciummobilizing agents. NECA and adenosine shift the concentration-response curve of tbe calcium ionophore A23187 to lower concentrations. 2 The potencies of NECA or adenosinein enhancing A23187-induced histamine release are dependent on the Ievel of stimulated release in tbe absence of adenosine analogues. At high Ievels of release their potencies are up to 20 times higher than at low Ievels. Consequently, averaged concentration-response curves of adenosine and NECA for enhancing bistamine release are shallow. 3 The adenosine transport blocker S-(p-nitrobenzyl)-6-thioinosine (NBTI) has no effect by itself at low Ievels of stimulated histamine release, but abolishes the enhancing effect of adenosine. At high Ievels of release, however, NBTI alone enhances the release of histamine. 4 lt is concluded that adenosine and calcium reciprocally enhance the sensitivity of the secretory processes to the effects of the other agent. The Ievels of intracellular adenosine obtained by trapping adenosine inside stimulated mast cells are sufficient to enhance histamine release substantially, suggesting that this effect may play a physiological and pathophysiological role. KW - Toxikologie Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60346 ER - TY - JOUR A1 - Tawfik-Schlieper, H. A1 - Klotz, Karl-Norbert A1 - Kreye, V. A. W. A1 - Schwabe, U. T1 - Characterization of the K\(^+\)-channel-coupled adenosine receptor in guinea pig atria N2 - In the present work we studied the pharmacological profile of adenosine receptors in guinea pig atria by investigating the effect of different adenosine analogues on 86Rb + -efflux from isolated left atria and on binding of the antagonist radioligand 8-cyclopentyl-1 ,3-[\(^3\)H]dipropylxanthine ([\(^3\)H]DPCPX) to atrial membrane preparations. The rate of \8^{86}\)Rb\(^+\) -effiux was increased twofold by the maximally effective concentrations of adenosine receptor agonists. The EC50-values for 2-chloro-N\(^6\)-cyclopentyladenosine (CCPA), R-N\(^6\)-phenylisopropyladenosine (R-PIA), 5'-Nethylcarboxamidoadenosine (NECA), and S-N\(^6\)-phenylisopropyladenosine (S-PIA) were 0.10, 0.14, 0.24 and 12.9 \(\mu\)M, respectively. DPCPX shifted the R-PIA concentration-response curve to the right in a concentration-dependent manner with a K\(_B\)-value of 8.1 nM, indicating competitive antagonism. [\(^3\)H]DPCPX showed a saturable binding to atrial membranes with a Bmax·value of 227 fmol/mg protein and a K\(_D\)-value of 1.3 nM. Competition experiments showed a similar potency for the three agonists CCPA, R-PIA and NECA. S-PIA is 200 times less potent than R-PIA. Our results suggest that the K\(^+\) channel-coupled adenosine receptor in guinea pig atria is of an A\(_1\) subtype. KW - Toxikologie KW - A1 Adenosine receptors KW - K + -channels KW - Atria KW - Radioligand binding - 86Rb + -efflux Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60333 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Lohse, M. J. A1 - Schwabe, U. A1 - Cristalli, G. A1 - Vittori, S. A1 - Grifantini, M. T1 - 2-Chloro-N\(^6\)-[\(^3\)H]cyclopentyladenosine ([\(^3\)H]CCPA) - a high affinity agonist radioligand for A\(_1\) adenosine receptors N2 - The tritiated analogue of 2-chloro-N6-cyclopentyladenosine (CCPA), an adenosine derivative with subnanomolar affinity and a 10000-fold selectivity for A1 adenosine receptors, has been examined as a new agonist radioligand. [3H]CCP A was prepared with a specifi.c radioactivity of 1.58 TBqjmmol ( 43 Ci/mmol) and bound in a reversible manner to A1 receptors from rat brain membranes with a high affinity K0 -value of 0.2 nmol/1. In the presence of GTP a K0 -value of 13 nmol/1 was determined for the low affinity state for agonist binding. Competition of several adenosine receptor agonists and antagonists for [3H]CCPA binding to rat brain membranes confrrmed binding to an A1 receptor. Solubilized A1 receptors bound [3H]CCPA with similar affinity for the high affinity state. At solubilized receptors a reduced association rate was observed in the presence of MgC12, as has been shown for the agonist [ 3H]N6-phenylisopropyladenosine ([3H]PIA). [3H]CCPA was also used for detection of A1 receptors in rat cardio myocyte membranes, a tissue with a very low receptor density. A K0 -value of 0.4 nmol/1 and a Bmax-value of 16 fmol/ mg protein was determined in these membranes. In human platelet membranes no specific binding of [3H]CCPA was measured at concentrations up to 400 nmoljl, indicating that A2 receptors did not bind [3H]CCPA. Based on the subnanomolar affinity and the high selectivity for A1 receptors [ 3H]CCPA proved to be a useful agonist radioligand for characterization of A 1 adenosine receptors also in tissues with very low receptor density. KW - Toxikologie KW - Adenosine receptors KW - Radioligauds KW - agonists Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60328 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Lohse, M. J. A1 - Schwabe, U. T1 - Chemical modification of A\(_1\) adenosine receptors in rat brain membranes - evidence for histidine in different domains of the ligand binding site N2 - Chemical modification of amino acid residues was used to probe the ligand recognition site of A\(_1\) adenosine receptors from rat brain membranes. The effect of treatment with group·specific reagents on agonist and antagonist radioligand binding was investigated. The histidine-specific reagent diethylpyrocarbonate (DEP) induced a loss of binding of the agonist R-N\(^6\)-[\(^3\)H]phenylisopropyladenosine ([\(^3\)H]PIA), which could be prevented in part by agonists, but not by antagonists. DEP treatment induced also a loss of binding of the antagonist [\(^3\)H]8- cyclopentyl-1 ,3-dipropylxanthine ([\(^3\)H]DPCPX). Antagonists protected A\(_1\) receptors from this inactivation while agonists did not. This result provided evidence for the existence of at least 2 different histidine residues involved in ligand binding. Consistent with a modification of the binding site, DEP did not alter the affinity of [\(^3\)H]DPCPX, but reduced receptor number. From the selective protection of [\(^3\)H] PIA and [\(^3\)H]DPCPX binding from inactivation, it is concluded that agonists and antagonists oocupy different domains at the binding site. Sulfhydryl modifying reagents did not influence antagonist binding, but inhibited agonist binding. This effect is explained by modification of tbe inhibitory guanine nucleotide binding protein. Pyridoxal 5-phosphate inactivated both [\(^3\)H]PIA and [\(^3\)H]DPCPX binding, but the receptors could not be protected from inactivation by ligands. Therefore, no amino group seems to be located at the Iigand binding site. In addition, it was shown that no further amino acids witb polar side chains are present. The absence of bydrophilic amino acids frout the recognition site of the receptor apart from histidine suggests an explanation for the lack of hydrophilic ligands with high affinity for A\(_1\) receptors. KW - Toxikologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60295 ER - TY - JOUR A1 - Lohse, M. J. A1 - Klotz, Karl-Norbert A1 - Diekmann, E. A1 - Friedrich, K. A1 - Schwabe, U. T1 - 2',3'-Dideoxy-N\(^6\)-cyclohexyladenosine: an adenosine derivative with antagonist properties at adenosine receptors N2 - Tbe 2',3'-dideoxy analogue of the potent A\(_1\) receptor agonist, N\(^6\)-cyclohexyladenosine (CHA), was synthesized as a potential antagonist for the A\(_1\) adenosine receptor. In sturlies on adenylate cyclase 2',3'-dideoxy-N\(^6\)-cyclohexyladenosine (ddCHA) did not show agonist properties at A\(_1\) or at A\(_2\) receptors. However, it antagonized the inhibition by R-PIA of adenylate cyclase activity of fat cell membranes via A\(_1\) receptors with a K\(_i\) value of 13 \(\mu\)M. ddCHA competed for the binding of the selective A1 receptor antagonist, [\(^3\) HJ8-cyclopentyl-1,3-dipropylxantbine ([\(^3\)H]DPCPX), to rat brain membranes with a K\(_i\) value of 4.8 \(\mu\)M; GTP did not affect the competition curve. In contrast to the marked stereoselectivity of the A\(_1\) receptor for the cx- and the natural ß-anomer of adenosine, the cx-anomer of ddCHA showed a comparable affinity for the A\(_1\) receptor (K\(_i\) value 13.9 \8\mu\)M). These data indicate that the 2'- and 3'-hydroxy groups of adenosine and its derivatives are required foragonist activity at and high affinity binding to A\(_1\) adenosine receptors and for the distinction between the cx- and ß-forms. KW - Toxikologie KW - Adenosine receptors KW - Adenylate cyclase KW - Adenosine receptor antagonists Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60282 ER - TY - JOUR A1 - Lohse, M. J. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. A1 - Cristalli, G. A1 - Vittori, S. A1 - Grifantini, M. T1 - 2-Chloro-N\(^6\)-cyclopentyladenosine: a highly selective agonist at A\(_1\) adenosine receptors N2 - 2-Chloro-N\(^6\)-cyclopentyladenosine (CCPA) was synthesized as a potential high affinity ligand for At adenosine receptors. Binding of [\(^3\)H]PIA to A1 receptors of rat brain membranes was inhibited by CCP A with a Ki-value of 0.4 nM, compared to a Ki-value of 0.8 nM for the parent compound N\(^6\)-cyclopentyladenosine (CPA). Binding of [\(^3\)H]NECA to A\(_2\) receptors of rat striatal membranes was inhibited with a Ki-value of 3900 nM, demonstrating an almost 10,000-fold A\(_1\)-selectivity of CCPA. CCP A inhibited the activity of rat fat cell membrane adenylate cyclase, a model for the A\(_1\) receptor, with an IC\(_{50}\)-value of 33 nM, and it stimulated the adenylate cyclase activity of human platelet membranes with an EC\(_{50}\)-value of 3500 nM. The more than 100-fold A\(_1\)-selectivity compares favourably with a 38-fold selectivity of CPA. Thus, CCPA is an agonist at A\(_1\) adenosine receptors with a 4-fold higher selectivity and 2-fold higher affinity than CPA, and a considerably higher selectivity than the standard At receptor agonist R-N\(^6\) -phenylisopropyladenosine (R-PIA). CCP A represents the agonist with the highest selectivity for A\(_1\) receptors reported so far. KW - Toxikologie KW - Adenosine receptors KW - Adenylate cyclase Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60279 ER - TY - JOUR A1 - Lohse, M. J. A1 - Elger, B. A1 - Lindenborn-Fotinos, J. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Separation of solubilized A\(_2\) adenosine receptors of human platelets from non-receptor [\(^3\)H]NECA binding sites by gel filtration N2 - Human platelet membranes were solubilized with the zwitterionic detergent CHAPS (3-[3-(cholamidopropyl)dimethylammonio]- 1-propanesulfonate) and the solubilized extract subjected to gel ftltration. Binding of the adenosine receptor agonist [\(^3\)H]NECA (5'-N-ethylcarboxamidoadenosine) was measured to the eluted fractions. Two [\(^3\)H]NECA binding peaks were eluted, the first of them with the void volume. This first peak represented between 10% and 25% of the [\(^3\)H]NECA binding activity eluted from the column. It bound [\(^3\)H]NECA in a reversible, saturable and GTPdependent manner with an affinity of 46 nmol/1 and a binding capacity of 510 fmol/mg protein. Various adenosine receptor ligands competed for the binding of [\(^3\)H]NECA to the frrst peak with a pharmacological proftle characteristic for the A\(_2\) adenosine receptor as determined from adenylate cyclase experiments. In contrast, most adenosine receptor ligands did not compete for [\(^3\)H]NECA binding to the second, major peak. These results suggest that a solubilized A\(_2\) receptor-Gs protein complex of human platelets can be separated from other [\(^3\)H]NECA binding sites by gel filtration. This allows reliable radioligand binding studies of the A2 adenosine receptor of human plate1ets. KW - Toxikologie KW - A2 Adenosine receptor KW - Human platelets KW - Radioligand binding KW - Adenylate cyclase Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60309 ER - TY - JOUR A1 - Lohse, M. J. A1 - Böser, S. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Affinities of barbiturates for the GABA-receptor complex and A\(_1\) adenosine receptors: A possible explanation of their excitatory effects N2 - The effects of barbiturates on the GABA·receptor complex and the A\(_1\) adenosine receptor were studied. At the GABA-receptor complex the barbiturates inhibited the binding of [\(^{35}\)S]t-butylbicyclophosphorothionate [\(^{35}\)S]TBPT) and enhanced the binding of [\(^3\)H]diazepam. Kinetic and saturation experiments showed that both effects were allosteric. Whereas all barbiturates caused complete inhibition of [\(^{35}\)S]TBPT binding, they showed varying degrees of maximal enhancement of [\(^3\)H]diazepam binding; (±)methohexital was idenafied as the most efficacious compound for this enhancement. At the A\(_1\) adenosine receptor all barbiturates inhibited the binding of [\(^3\)H]N\(^6\)-phenylisopropyladenosine (\(^3\)H]PIA) in a competitive manner. The comparison of the effects on [\(^3\)H]diazepam and [\(^3\)H]PIA binding showed that excitatory barbiturates interact preferentially with the A\(_1\) adenosine receptor, and sedative/anaesthetic barbiturates with the GABA-receptor complex. It is speculated that the interaction with these two receptors might be the basis of the excitatory versus sedative/ anaesthetic properties of barbiturates. KW - Toxikologie KW - GABA-receptor complex KW - Adenosine receptors KW - Barbiturates Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60250 ER - TY - JOUR A1 - Lohse, M. J. A1 - Klotz, Karl-Norbert A1 - Lindenborn Fotinos, J. A1 - Reddington, M. A1 - Schwabe, U. A1 - Olsson, R. A. T1 - 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) - a selective high affinity antagonist radioligand for A\(_1\) adenosine receptors N2 - The properties of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) as an antagonist ligand for A\(_1\) adenosirre receptors were examined and conipared with other radioligands for this receptor. DPCPX competitively antagonized both the inhibition of adenylate cyclase activity via A\(_1\) adenosirre receptors and the stimulationvia A\(_2\) adenosirre receptors. The K\(_i\)-values of this antagonism were 0.45 nM at the A\(_1\) receptor of rat fat cells, and 330 nM at the A\(_2\) receptor of human platelets, giving a more than 700-fold A\(_1\)-selectivity. A similar A\(_1\)-selectivity was determined in radioligand binding studies. Even at high concentrations, DPCPX did not significantly inhibit the soluble cAMPphosphodiesterase activity of human platelets. [\(^3\)H]DPCPX (105 Ci/mmol) bound in a saturable manner with high affinity to A\(_1\) receptors in membranes of bovine brain and heart, and rat brain and fat cells (K\(_D\) -values 50-190 pM). Its nonspecific binding was about 1% of total at K\(_D\) , except in bovine myocardial membranes (about 10%). Binding studies with bovine myocardial membranes allowed the analysis of both the high and low agonist affinity states of this receptor in a tissue with low receptor density. The binding properties of [\(^3\)H]DPCPX appear superior to those of other agonist and antagonist radioligands for the A\(_1\) receptor. KW - Toxikologie KW - Adenosine receptors KW - Adenylate cyclase KW - Phosphodiesterase KW - Xanthines KW - Radioligands Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60246 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Lohse, M. J. A1 - Schwabe, U. T1 - Characterization of the solubilized A\(_1\) adenosine receptor from rat brain membranes N2 - A\(_1\) adenosine receptors from rat brain membranes were solubilized with the zwitterionic detergent 3-[3-( cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized receptors retained all the characteristics of membrane-bound A\(_1\) adenosine receptors. A high and a low agonist affinity state for the radiolabelled agonist (R)-\(N^6\)-[\(^3\)H]phenylisopropyladenosine([\(^3\)H]PJA) with K\(_D\) values of 0.3 and 12 nM, respectively, were detected. High-affinity agonist binding was regulated by guanine nucleotides. In addition agonist binding was still modulated by divalent cations. The solubilized A\(_1\) adenosine receptors could be labelled not only with the agonist [\(^3\)H]PIA but also with the antagonist I ,3-diethyi-8-[\(^3\)H]phenylxanthine. Guanine nucleotides did not affect antagonist binding as reported for membrane-bound receptors. These results suggest that the solubilized receptors are still coupled to the guanine nucleotide binding protein N; and that all regulatory functions are retained on solubilization. Key Words: A1 adenosine receptors - Solubilization- Rat brain membranes. Klotz K.-N. et al. Characterization of the solubilized A1 adenosine receptor from rat brain membranes. J. Neurochem. 46, 1528-1534 (1986). KW - Toxikologie KW - A1 adenosine receptors KW - solubilization KW - rat brain membranes Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60222 ER - TY - JOUR A1 - Ukena, D. A1 - Schirren, C. G. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Evidence for an A\(_2\) adenosine receptor in guinea pig lung N2 - Adenosine receptors in guinea pig lung were characterized by measurement of cyclic AMP formation and radioligand binding. 5'-N-Ethylcarboxamidoadenosine (NECA) increased cyclic AMP Ievels in lung slices about 4-fold over basal values with an EC\(_{50}\) of 0.32 \(\mu\)mol/l. N\(^6\) - R-(- )-Phenylisopropyladenosine (R-PIA) was 5-fold less potent than NECA. 5'-N-Methylcarboxamidoadenosine (MECA) and 2-chloroadenosine had EC\(_{50}\)-values of 0.29 and 2.6 \(\mu\)mol/l, whereas adenosine and inosine had no effect. The adenosine receptors in guinea pig Iung can therefore be classified as A\(_2\) receptors. Several xanthine derivatives antagonized the NECA-induced increase in cyclic AMP levels. 1,3-Diethyl-8-phenylxanthine (DPX; K\(_i\) 0.14 \(\mu\)mol/l) was the most potent analogue, followed by 8-phenyltheophylline (K\(_i\) 0.55 \(\mu\)mol/l), 3-isobutyl-1-methylxanthine (IBMX; K\(_i\) 2.9 \(\mu\)mol/l) and theophylline (K\(_i\) 8.1 \(\mu\)mol/l). In contrast, enprofylline (1 mmol/1) enhanced basal and NECA-stimulated cyclic AMP formation. In addition, we attempted to characterize these receptors in binding studies with [\(^3\)H]NECA. The K\(_D\) for [\(^3\)H] NECA was 0.25 \(\mu\)mol/l and the maximal number of binding sites was 12 pmol/mg protein. In competition experiments MECA (K\(_i\) 0.14 \(\mu\)mol/l) was the most potent inhibitor of [\(^3\)H] NECA binding, followed by NECA (K\(_i\) 0.19 \(\mu\)mol/l) and 2-chloroadenosine (K\(_i\) 1.4 \(\mu\)mol/l). These results correlate well with the EC\(_{50}\)- values for cyclic AMP formation in lung slices. However, the K\(_i\)-values of R-PIA and theophylline were 240 and 270 \(\mu\)mol/l, and DPX and 8-phenyltheophylline did not compete for [\(^3\)H]NECA binding sites. Therefore, a complete characterization of A\(_2\) adenosine receptors by [\(^3\)H] NECA binding was not achieved. In conclusion, our results show the presence of adenylate cyclase-coupled A\(_2\) adenosiile receptors in lung tissue which are antagonized by several xanthines. KW - Toxikologie KW - Adenosine receptors KW - Cyclic AMP KW - Lung KW - Theophylline Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60202 ER - TY - JOUR A1 - Lohse, M. J. A1 - Klotz, Karl-Norbert A1 - Jakobs, K. H. A1 - Schwabe, U. T1 - Barbiturates are selective antagonists at A\(_1\) adenosine receptors N2 - Barbiturates in pharmacologically relevant . concentrations inhibit binding of (R)-\(N^6\)-phenylisopropyl[\(^3\)H]adenosine ([\(^3\)H]PIA) to solubilized A\(_1\) adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. K\(_i\) values are similar to those obtained for membrane-bound receptors and are 31 \(\mu\)M for ( ± )-5-(1 ,3-dimethyl)-5-ethylbarbituric acid [( ± )DMBB] and 89 \(\mu\)M for ( ± )-pentobarbital. Kinetic experiments demoostrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-\(N^6\)-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The Stimulation of adenylate cyclase via A\(_2\) adenosine receptors in membranes from NIE 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. lt is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A\(_1\) adenosine receptor antagonism may convey excitatory properties to barbiturates. Key Words: Adenosine receptors-Barbiturates - Adenylate cyclase-Receptor solubilization-[3H]PIA binding-N1E 115 cells. Lohse M. J. et al. Barbiturates are selective antagonists at A1 adenosine receptors. KW - Toxikologie KW - adenosine receptors KW - barbiturates KW - adenylate cyclase KW - receptor solubilization KW - N1E 115 cells KW - [3H]PIA binding Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60187 ER -