TY - JOUR A1 - Bauriedl, Saskia A1 - Gerovac, Milan A1 - Heidrich, Nadja A1 - Bischler, Thorsten A1 - Barquist, Lars A1 - Vogel, Jörg A1 - Schoen, Christoph T1 - The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition JF - Nature Communications N2 - FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence. KW - Neisseria meningitidis KW - natural transformation KW - dual function KW - FinO family KW - HFQ KW - chaperone KW - transcriptome KW - regulator KW - sequence KW - in vivo Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230040 VL - 11 ER - TY - JOUR A1 - Bischler, Thorsten A1 - Kopf, Matthias A1 - Voss, Bjoern T1 - Transcript mapping based on dRNA-seq data JF - BMC Bioinformatics N2 - Background: RNA-seq and its variant differential RNA-seq (dRNA-seq) are today routine methods for transcriptome analysis in bacteria. While expression profiling and transcriptional start site prediction are standard tasks today, the problem of identifying transcriptional units in a genome-wide fashion is still not solved for prokaryotic systems. Results: We present RNASEG, an algorithm for the prediction of transcriptional units based on dRNA-seq data. A key feature of the algorithm is that, based on the data, it distinguishes between transcribed and un-transcribed genomic segments. Furthermore, the program provides many different predictions in a single run, which can be used to infer the significance of transcriptional units in a consensus procedure. We show the performance of our method based on a well-studied dRNA-seq data set for Helicobacter pylori. Conclusions: With our algorithm it is possible to identify operons and 5'- and 3'-UTRs in an automated fashion. This alleviates the need for labour intensive manual inspection and enables large-scale studies in the area of comparative transcriptomics. KW - transcriptional start site KW - dynamic programming KW - RNA-seq KW - differential KW - segmentation KW - transcriptional uni KW - transcriptome KW - reveals KW - model Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116663 SN - 1471-2105 VL - 15 IS - 122 ER - TY - JOUR A1 - Boschert, Verena A1 - Klenk, Nicola A1 - Abt, Alexander A1 - Raman, Sudha Janaki A1 - Fischer, Markus A1 - Brands, Roman C. A1 - Seher, Axel A1 - Linz, Christian A1 - Müller-Richter, Urs D. A. A1 - Bischler, Thorsten A1 - Hartmann, Stefan T1 - The influence of Met receptor level on HGF-induced glycolytic reprogramming in head and neck squamous cell carcinoma JF - International Journal of Molecular Sciences N2 - Head and neck squamous cell carcinoma (HNSCC) is known to overexpress a variety of receptor tyrosine kinases, such as the HGF receptor Met. Like other malignancies, HNSCC involves a mutual interaction between the tumor cells and surrounding tissues and cells. We hypothesized that activation of HGF/Met signaling in HNSCC influences glucose metabolism and therefore substantially changes the tumor microenvironment. To determine the effect of HGF, we submitted three established HNSCC cell lines to mRNA sequencing. Dynamic changes in glucose metabolism were measured in real time by an extracellular flux analyzer. As expected, the cell lines exhibited different levels of Met and responded differently to HGF stimulation. As confirmed by mRNA sequencing, the level of Met expression was associated with the number of upregulated HGF-dependent genes. Overall, Met stimulation by HGF leads to increased glycolysis, presumably mediated by higher expression of three key enzymes of glycolysis. These effects appear to be stronger in Met\(^{high}\)-expressing HNSCC cells. Collectively, our data support the hypothesized role of HGF/Met signaling in metabolic reprogramming of HNSCC. KW - HNSCC KW - head and neck cancer KW - HGF KW - Met KW - cancer metabolism Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235995 SN - 1422-0067 VL - 21 IS - 2 ER - TY - JOUR A1 - Brenzinger, Kristof A1 - Maihoff, Fabienne A1 - Peters, Marcell K. A1 - Schimmer, Leonie A1 - Bischler, Thorsten A1 - Classen, Alice T1 - Temperature and livestock grazing trigger transcriptome responses in bumblebees along an elevational gradient JF - iScience N2 - Climate and land-use changes cause increasing stress to pollinators but the molecular pathways underlying stress responses are poorly understood. Here, we analyzed the transcriptomic response of Bombus lucorum workers to temperature and livestock grazing. Bumblebees sampled along an elevational gradient, and from differently managed grassland sites (livestock grazing vs unmanaged) in the German Alps did not differ in the expression of genes known for thermal stress responses. Instead, metabolic energy production pathways were upregulated in bumblebees sampled in mid- or high elevations or during cool temperatures. Extensive grazing pressure led to an upregulation of genetic pathways involved in immunoregulation and DNA-repair. We conclude that widespread bumblebees are tolerant toward temperature fluctuations in temperate mountain environments. Moderate temperature increases may even release bumblebees from metabolic stress. However, transcriptome responses to even moderate management regimes highlight the completely underestimated complexity of human influence on natural pollinators. KW - bumblebees KW - stress KW - transcriptomic response KW - climate changes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301276 VL - 25 IS - 10 ER - TY - JOUR A1 - Correia Santos, Sara A1 - Bischler, Thorsten A1 - Westermann, Alexander J. A1 - Vogel, Jörg T1 - MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT JF - Cell Reports N2 - A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs. KW - gene expression KW - nondocing RNA KW - chaperone HFQ KW - soluble-RNA KW - SEQ KW - interactome KW - repression KW - secretion KW - infection KW - biology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259134 VL - 34 IS - 5 ER - TY - JOUR A1 - Dischinger, Ulrich A1 - Heckel, Tobias A1 - Bischler, Thorsten A1 - Hasinger, Julia A1 - Königsrainer, Malina A1 - Schmitt-Böhrer, Angelika A1 - Otto, Christoph A1 - Fassnacht, Martin A1 - Seyfried, Florian A1 - Hankir, Mohammed Khair T1 - Roux-en-Y gastric bypass and caloric restriction but not gut hormone-based treatments profoundly impact the hypothalamic transcriptome in obese rats JF - Nutrients N2 - Background: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. Methods: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. Results: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK–STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. Conclusions: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation. KW - obesity KW - Roux-en-Y gastric bypass surgery KW - liraglutide KW - PYY3-36 KW - hypothalamic gene expression Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252392 SN - 2072-6643 VL - 14 IS - 1 ER - TY - JOUR A1 - Dugar, Gaurav A1 - Svensson, Sarah L. A1 - Bischler, Thorsten A1 - Waldchen, Sina A1 - Reinhardt, Richard A1 - Sauer, Markus A1 - Sharma, Cynthia M. T1 - The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni JF - Nature Communications N2 - The widespread CsrA/RsmA protein regulators repress translation by binding GGA motifs in bacterial mRNAs. CsrA activity is primarily controlled through sequestration by multiple small regulatory RNAs. Here we investigate CsrA activity control in the absence of antagonizing small RNAs by examining the CsrA regulon in the human pathogen Campylobacter jejuni. We use genome-wide co-immunoprecipitation combined with RNA sequencing to show that CsrA primarily binds flagellar mRNAs and identify the major flagellin mRNA (flaA) as the main CsrA target. The flaA mRNA is translationally repressed by CsrA, but it can also titrate CsrA activity. Together with the main C. jejuni CsrA antagonist, the FliW protein, flaA mRNA controls CsrA-mediated post-transcriptional regulation of other flagellar genes. RNA-FISH reveals that flaA mRNA is expressed and localized at the poles of elongating cells. Polar flaA mRNA localization is translation dependent and is post-transcriptionally regulated by the CsrA-FliW network. Overall, our results suggest a role for CsrA-FliW in spatiotemporal control of flagella assembly and localization of a dual-function mRNA. KW - bacterial genetics KW - cell signalling KW - translation KW - Campylobacter jejuni Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173201 VL - 7 ER - TY - JOUR A1 - Esken, Jens A1 - Goris, Tobias A1 - Gadkari, Jennifer A1 - Bischler, Thorsten A1 - Förstner, Konrad U. A1 - Sharma, Cynthia M. A1 - Diekert, Gabriele A1 - Schubert, Torsten T1 - Tetrachloroethene respiration in Sulfurospirillum species is regulated by a two‐component system as unraveled by comparative genomics, transcriptomics, and regulator binding studies JF - MicrobiologyOpen N2 - Energy conservation via organohalide respiration (OHR) in dehalogenating Sulfurospirillum species is an inducible process. However, the gene products involved in tetrachloroethene (PCE) sensing and signal transduction have not been unambiguously identified. Here, genome sequencing of Sulfurospirillum strains defective in PCE respiration and comparative genomics, which included the PCE‐respiring representatives of the genus, uncovered the genetic inactivation of a two‐component system (TCS) in the OHR gene region of the natural mutants. The assumption that the TCS gene products serve as a PCE sensor that initiates gene transcription was supported by the constitutive low‐level expression of the TCS operon in fumarate‐adapted cells of Sulfurospirillum multivorans. Via RNA sequencing, eight transcriptional units were identified in the OHR gene region, which includes the TCS operon, the PCE reductive dehalogenase operon, the gene cluster for norcobamide biosynthesis, and putative accessory genes with unknown functions. The OmpR‐family response regulator (RR) encoded in the TCS operon was functionally characterized by promoter‐binding assays. The RR bound a cis‐regulatory element that contained a consensus sequence of a direct repeat (CTATW) separated by 17 bp. Its location either overlapping the −35 box or 50 bp further upstream indicated different regulatory mechanisms. Sequence variations in the regulator binding sites identified in the OHR gene region were in accordance with differences in the transcript levels of the respective gene clusters forming the PCE regulon. The results indicate the presence of a fine‐tuned regulatory network controlling PCE metabolism in dehalogenating Sulfurospirillum species, a group of metabolically versatile organohalide‐respiring bacteria. KW - genomics KW - organohalide respiration KW - RNA sequencing KW - tetrachloroethene KW - transcriptomics KW - two‐component system Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225754 VL - 9 IS - 12 ER - TY - JOUR A1 - Karikari, Akua A. A1 - McFleder, Rhonda L. A1 - Ribechini, Eliana A1 - Blum, Robert A1 - Bruttel, Valentin A1 - Knorr, Susanne A1 - Gehmeyr, Mona A1 - Volkmann, Jens A1 - Brotchie, Jonathan M. A1 - Ahsan, Fadhil A1 - Haack, Beatrice A1 - Monoranu, Camelia-Maria A1 - Keber, Ursula A1 - Yeghiazaryan, Rima A1 - Pagenstecher, Axel A1 - Heckel, Tobias A1 - Bischler, Thorsten A1 - Wischhusen, Jörg A1 - Koprich, James B. A1 - Lutz, Manfred B. A1 - Ip, Chi Wang T1 - Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson’s disease mice JF - Brain, Behavior, and Immunity N2 - Background Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson’s disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. Methods We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)\(^{-/-}\) mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4\(^{+}\)/CD8\(^{-}\), CD4\(^{-}\)/CD8\(^{+}\), or CD4\(^{+}\)/CD8\(^{+}\) (JHD\(^{-/-}\)) mice into the RAG-1\(^{-/-}\) mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. Results AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68–78) and surrounding the pathogenically relevant S129 (120–134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. Conclusions Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology. KW - Parkinson’s disease KW - α-synuclein-specific T cells KW - neurodegeneration Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300600 VL - 101 SP - 194 EP - 210 ER - TY - JOUR A1 - Metzner, Valentin A1 - Herzog, Gloria A1 - Heckel, Tobias A1 - Bischler, Thorsten A1 - Hasinger, Julia A1 - Otto, Christoph A1 - Fassnacht, Martin A1 - Geier, Andreas A1 - Seyfried, Florian A1 - Dischinger, Ulrich T1 - Liraglutide + PYY\(_{3-36}\) combination therapy mimics effects of Roux-en-Y bypass on early NAFLD whilst lacking-behind in metabolic improvements JF - Journal of Clinical Medicine N2 - Background: Treatment options for NAFLD are still limited. Bariatric surgery, such as Roux-en-Y gastric bypass (RYGB), has been shown to improve metabolic and histologic markers of NAFLD. Glucagon-like-peptide-1 (GLP-1) analogues lead to improvements in phase 2 clinical trials. We directly compared the effects of RYGB with a treatment using liraglutide and/or peptide tyrosine tyrosine 3-36 (PYY\(_{3-36}\)) in a rat model for early NAFLD. Methods: Obese male Wistar rats (high-fat diet (HFD)-induced) were randomized into the following treatment groups: RYGB, sham-operation (sham), liraglutide (0.4 mg/kg/day), PYY\(_{3-36}\) (0.1 mg/kg/day), liraglutide+PYY\(_{3-36}\), and saline. After an observation period of 4 weeks, liver samples were histologically evaluated, ELISAs and RNA sequencing + RT-qPCRs were performed. Results: RYGB and liraglutide+PYY\(_{3-36}\) induced a similar body weight loss and, compared to sham/saline, marked histological improvements with significantly less steatosis. However, only RYGB induced significant metabolic improvements (e.g., adiponectin/leptin ratio 18.8 ± 11.8 vs. 2.4 ± 1.2 in liraglutide+PYY\(_{3-36}\)- or 1.4 ± 0.9 in sham-treated rats). Furthermore, RNA sequencing revealed a high number of differentially regulated genes in RYGB treated animals only. Conclusions: The combination therapy of liraglutide+PYY\(_{3-36}\) partly mimics the positive effects of RYGB on weight reduction and on hepatic steatosis, while its effects on metabolic function lack behind RYGB. KW - liraglutide KW - GLP-1 KW - peptide tyrosine tyrosine (PYY) KW - peptide tyrosine tyrosine 3-36 (PYY\(_{3-36}\)) KW - RYGB KW - gastric bypass KW - obesity KW - NASH KW - NAFLD Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-255244 SN - 2077-0383 VL - 11 IS - 3 ER -