TY - JOUR A1 - Bazihizina, Nadia A1 - Böhm, Jennifer A1 - Messerer, Maxim A1 - Stigloher, Christian A1 - Müller, Heike M. A1 - Cuin, Tracey Ann A1 - Maierhofer, Tobias A1 - Cabot, Joan A1 - Mayer, Klaus F. X. A1 - Fella, Christian A1 - Huang, Shouguang A1 - Al‐Rasheid, Khaled A. S. A1 - Alquraishi, Saleh A1 - Breadmore, Michael A1 - Mancuso, Stefano A1 - Shabala, Sergey A1 - Ache, Peter A1 - Zhang, Heng A1 - Zhu, Jian‐Kang A1 - Hedrich, Rainer A1 - Scherzer, Sönke T1 - Stalk cell polar ion transport provide for bladder‐based salinity tolerance in Chenopodium quinoa JF - New Phytologist N2 - Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na\(^{+}\)), chloride (Cl\(^{−}\)), potassium (K\(^{+}\)) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived. KW - halophyte KW - polar ion transport KW - quinoa KW - salt tolerance KW - stalk cell Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287222 VL - 235 IS - 5 SP - 1822 EP - 1835 ER - TY - JOUR A1 - Böhm, Jennifer A1 - Scherzer, Sönke A1 - Krol, Elzbieta A1 - Kreuzer, Ines A1 - von Meyer, Katharina A1 - Lorey, Christian A1 - Mueller, Thomas D. A1 - Shabala, Lana A1 - Monte, Isabel A1 - Salano, Roberto A1 - Al-Rasheid, Khaled A. S. A1 - Rennenberg, Heinz A1 - Shabala, Sergey A1 - Neher, Erwin A1 - Hedrich, Rainer T1 - The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake JF - Current Biology N2 - Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. KW - Venusfliegenfalle KW - Dionaea muscipula Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128054 VL - 26 IS - 3 ER - TY - JOUR A1 - Böhm, Jennifer A1 - Scherzer, Sönke A1 - Krol, Elzbieta A1 - Kreuzer, Ines A1 - von Meyer, Katharina A1 - Lorey, Christian A1 - Mueller, Thomas D. A1 - Shabala, Lana A1 - Monte, Isabel A1 - Solano, Roberto A1 - Al-Rasheid, Khaled A. S. A1 - Rennenberg, Heinz A1 - Shabala, Sergey A1 - Neher, Erwin A1 - Hedrich, Rainer T1 - The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake JF - Current Biology N2 - Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na\(^+\)-rich animal and nutrition for the plant. KW - jasmonic acid biosynthesis KW - gene expression KW - signal transduction KW - transporters KW - Arabidopsis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190870 VL - 26 IS - 3 ER - TY - JOUR A1 - Graus, Dorothea A1 - Li, Kunkun A1 - Rathje, Jan M. A1 - Ding, Meiqi A1 - Krischke, Markus A1 - Müller, Martin J. A1 - Cuin, Tracey Ann A1 - Al‐Rasheid, Khaled A. S. A1 - Scherzer, Sönke A1 - Marten, Irene A1 - Konrad, Kai R. A1 - Hedrich, Rainer T1 - Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling JF - New Phytologist N2 - Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically‐driven leaf movements. Leaf downward movement caused by hydro‐passive turgor loss reached a maximum within 2 h. Salt‐driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca\(^{2+}\)) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H\(^{+}\)) pumping, a salt uptake‐dependent cytosolic alkalization, and a return of the apoplast osmolality to pre‐stress levels. Although, transcript numbers of abscisic acid‐ and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H\(^{+}\)/Na\(^{+}\)‐exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na\(^{+}\)) rapidly even under massive salt loads, based on pre‐established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca\(^{2+}\) signaling. KW - calcium signaling KW - cytosolic pH KW - leaf response KW - NaCl transport KW - NHX1 KW - osmotic effects KW - Salt Overly Sensitive pathway KW - salt stress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312152 VL - 237 IS - 1 SP - 217 EP - 231 ER - TY - JOUR A1 - Huang, Shouguang A1 - Ding, Meiqi A1 - Roelfsema, M. Rob G. A1 - Dreyer, Ingo A1 - Scherzer, Sönke A1 - Al-Rasheid, Khaled A. S A1 - Gao, Shiqiang A1 - Nagel, Georg A1 - Hedrich, Rainer A1 - Konrad, Kai R. T1 - Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1 JF - Science Advances N2 - Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata. KW - abscisic-acid activation KW - Arabidopsis thaliana KW - H+-atpase KW - signal transduction KW - potassium channel KW - intact plants KW - K+ channels KW - R-type KW - CO2 KW - SLAC1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260925 VL - 7 IS - 28 ER - TY - THES A1 - Scherzer, Sönke T1 - Biophysikalische Analyse und Rekonstitution des schnellen ABA-Signaltransduktionsweges aus Arabidopsis thaliana T1 - Biophysical analysis and reconstitution of the fast ABA-signal transduction pathway in Arabidopsis thaliana N2 - In dieser Arbeit sollte zunächst die Frage geklärt werden, ob es sich bei SLAC1 um den S-typ Anionenkanal handelt, oder ob SLAC1 nur ein essentieller Bestandteil des Anionenkanals ist. Zur funktionellen Charakterisierung des per se inaktiven SLAC1 Proteins, wurde mit der Suche nach SLAC1-aktivierenden Interaktionspartnern begonnen. Zu diesem Zweck bediente man sich der Methode der bimolekularen Fluoreszenz Komplementation (BiFC) im heterologen Expressionssystem der Xenopus Oozyten. Da bereits die Abhängigkeit der Anionenströme in Schließzellen von De- und Phosphorylierungsereignissen bekannt war, galt Ca2+-abhängigen Kinasen der CPK Familie, ABA-aktivierten Kinasen der SnRK Familie und Phosphatasen des PP2C Typs eine besondere Aufmerksamkeit. Mitglieder dieser Familien wurden bereits mit der Regulation des Stomaschlusses in Verbindung gebracht. Bei diesen Experimenten zeigte sich, dass SnRK2.6 (OST1) und mehrere CPKs deutlich mit SLAC1 physikalisch interagierten. Als Folge dieser Interaktion in Oozyten konnten schließlich nach Koexpression von SLAC1 zusammen mit den interagierenden Kinasen typische S-Typ Anionenströme detektiert werden, wie man sie aus Patch-Clamp Experimenten an isolierten Schließzellprotoplasten kannte. Hierbei bewirkten die Kinasen OST1 und CPK23 die größte Anionenkanalaktivierung. Dieses Ergebnis wird durch die BIFC-Experimente gestützt, da OST1 und CPK23 die stärkste Interaktion zu SLAC1 zeigten. Die elektrophysiologische Charakterisierung der SLAC1-Ströme im heterologen Expressionssystem der Xenopus Oozyten in Kombination mit in vivo Patch-Clamp Untersuchungen wies SLAC1 eindeutig als den lange gesuchten S-Typ Anionenkanal in Arabidopsis Schließzellen aus. Somit ist die direkte S-Typ Anionenkanalaktivierung durch OST1 auf dem Kalzium- unabhängigen und durch CPKs auf dem Ca2+-abhängigen ABA-Signaltransduktionsweg gelungen. Bei der Spezifizierung der einzelnen Kalzium-Abhängigkeiten dieser Kinasen in Oozyten und in in vitro Kinase Assays konnten weiterhin unterschiedliche Affinitäten der CPKs zu Kalzium festgestellt werden. So vermittelten die schwach Kalzium-abhängigen CPK6 und CPK23 bereits ohne einen Anstieg der zytosolischen Kalziumkonzentratiom über das Ruheniveau hinaus schon die Anionenkanalaktivierung. Die stark Kalzium-abhängigen CPK3 und CPK21 hingegen, werden erst aktiv wenn die ABA vermittelte Signaltransduktion zu einem Anstieg der Kalziumkonzentration führt. Da somit die Kinasen OST1, CPK6 und CPK23 ohne dieses Kalziumsignal aktiv sind, benötigen diese einen übergeordneten Regulationsmechanismus. In den BIFC-Experimenten konnte eine deutliche Interaktion der Phosphatasen ABI1 und 2 zu den SLAC1 aktivierenden Kinasen beobachtet werden. Dass diese Interaktion zu einem Ausbleiben der Anionenkanalaktivierung führt, wurde in TEVC-Messungen gezeigt. Mit diesen Erkenntnissen um die ABA-Signaltransduktionskette in Schließzellen konnten in in vitro Kinase Experimenten ihre einzelnen Glieder zusammengesetzt und der ABA-vermittelte Stomaschluss nachvollzogen werden. In dieser Arbeit zeigte sich, dass, das unter Wasserstress-Bedingungen synthetisierte Phytohormon, ABA von Rezeptoren der RCAR/PYR/PYL-Familie percepiert wird. Anschließend bindet die Phosphatase ABI1 an den ABA-RCAR1 Komplex. In ihrer freien Form inhibiert die Phosphatase ABI1 die Kinasen OST1, CPK3, 6, 21 und CPK23 durch Dephosphorylierung. Nach Bindung von ABI1 an RCAR1 sind diese Kinasen von dem inhibierenden ABI1 entlassen. Die Kinasen OST1, CPK6 und CPK23 stellen ihre Aktivität durch Autophosphorylierung wieder her. Die stark Ca2+-abhängigen Kinasen CPK3 und 21 benötigt hierzu noch einen ABA induzierten Ca2+-Anstieg im Zytoplasma. Diese Kinasen phosphorylieren anschließend SLAC1 am N-Terminus. Diese Phosphorylierung bewirkt die Aktivierung von SLAC1 woraufhin Anionen aus der Schließzelle entlassen werden. Das Fehlen dieser negativen Ladungen führt zur Depolarisation der Membran woraufhin der auswärtsgleichrichtende Kaliumkanal GORK aktiviert und K+ aus der Schließzelle entlässt. Der Verlust an Osmolyten bewirkt einen osmotisch getriebenen Wasserausstrom und das Stoma schließt sich. N2 - This work should clarify whether SLAC1 is the anion channel itself, or a regulatory component of S-type anion channels. To answer this question we searched for activating interaction partners of SLAC1. For this purpose the bimolecular fluorescence complementation (BiFC) technique was used following heterologous expression in Xenopus oocytes. Since anion currents of guard cells have been shown to be associated with phosphorylation events we focused on calcium dependent kinases (CPKs), ABA-activated SnRK kinases and PP2C phosphatases. Members of these families were already known to be involved in ABA-dependent stomatal closure. BIFC experiments revealed that SnRK2.6 (OST1) and several CPKs physically interact with SLAC1 in oocytes. Upon coexpression of SLAC1 with these interacting kinases in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Strongest anion channel activation was detected by coexpression of SLAC1 and OST1 or CPK23. These findings are supported by BIFC experiments detecting OST1 and CPK23 also as strongest interaction partners of SLAC1. The electrophysiological characterization of SLAC1 currents in Xenopus oocytes, in combination with in vivo patch clamp studies demonstrated that SLAC1 is the major component of S-type anion currents in Arabidopsis guard cells. Furthermore we could show that OST1 mediates direct S-type anion channel activation in a calcium-independent manner whereas CPKs are positive regulators of SLAC1 in the calcium-dependent branch of the ABA signaling pathway. Moreover in vitro kinase assays and TEVC measurements in oocytes revealed that there are two groups of SLAC1 activating CPK kinases with distinct Ca2+ affinities: i) the weak calcium-dependent CPK6 and CPK23 mediate anion channel activation even at the low resting calcium concentrations while ii) the high affinity kinases CPK3 and CPK21 are only active in response to an increase in cytosolic calcium concentration. Since OST1, CPK6 and CPK23 are active even without a preceding calcium signal, a master regulator is necessary which keeps those kinases inactive in the absence of ABA. BIFC experiments revealed a strong interaction of phosphatases ABI1 and 2 towards the SLAC1 activating kinases. Interestingly the integration of ABI1 into the SLAC1/kinase complex prevented SLAC1 activation in oocytes. Taken together our findings allowed us to reconstitute the ABA signaling pathway from the perception of ABA to the activation of S-type anion channel SLAC1, in turn leading to stomatal closure. Under water stress conditions the phytohormone ABA is synthesized and sensed by its receptors (RCAR/PYR/PYL). This allows binding of ABI1 to the active ABA-RCAR1 complex. In its free form ABI1 by dephosphorylation inhibits the kinases OST1, CPK3, 6, 21 and CPK23. After binding of ABI1 to RCAR1, however, these kinases are released from the inhibitory effect of ABI1. The kinases OST1, CPK23 and CPK6 become active by autophosphorylation. The strong Ca2+-dependent kinases CPK3 and CPK21 in addition need an ABA-induced rise in cytosolic calcium concentration to restore their activity. These active kinases phosphorylate SLAC1 at its N-terminus leading to the activation of SLAC1. The release of anions from guard cells depolarizes the guard cell membrane potential whereupon the outward rectifying potassium channel GORK is gated open. Finally the loss of osmolytes causes an osmotic driven water loss, the guard cells shrink and thus the stoma closes. KW - Schließzelle KW - Abscisinsäure KW - Calcium KW - OST1 KW - CPK KW - OST1 KW - CPK Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76199 ER - TY - JOUR A1 - Scherzer, Sönke A1 - Huang, Shouguang A1 - Iosip, Anda A1 - Kreuzer, Ines A1 - Yokawa, Ken A1 - Al-Rasheid, Khaled A. S. A1 - Heckmann, Manfred A1 - Hedrich, Rainer T1 - Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap JF - Scientific reports N2 - Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca\(^{2+}\) wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K\(^{+}\) channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap’s prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca\(^{2+}\) transients, we, in mature trigger hairs firing fast Ca\(^{2+}\) signals and APs, found OSCA1.7 and GLR3.6 type Ca\(^{2+}\) channels and ACA2/10 Ca\(^{2+}\) pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca\(^{2+}\) and electrical event. Given that anesthetics affect K\(^+\) channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca\(^{2+}\) and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca\(^{2+}\) activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ. KW - biophysics KW - drug discovery KW - physiology KW - plan sciences Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300411 VL - 12 ER -