TY - JOUR A1 - Wolf, Karen A1 - Braun, Attila A1 - Haining, Elizabeth J. A1 - Tseng, Yu-Lun A1 - Kraft, Peter A1 - Schuhmann, Michael K. A1 - Gotru, Sanjeev K. A1 - Chen, Wenchun A1 - Hermanns, Heike M. A1 - Stoll, Guido A1 - Lesch, Klaus-Peter A1 - Nieswandt, Bernhard T1 - Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice JF - PLoS One N2 - Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization. KW - platelets KW - serotonin KW - integrins KW - blood flow KW - collagens KW - platelet activation KW - platelet aggregation KW - ischemic stroke Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146399 VL - 11 IS - 1 ER - TY - JOUR A1 - Vogelsang, Anna A1 - Eichler, Susann A1 - Huntemann, Niklas A1 - Masanneck, Lars A1 - Böhnlein, Hannes A1 - Schüngel, Lisa A1 - Willison, Alice A1 - Loser, Karin A1 - Nieswandt, Bernhard A1 - Kehrel, Beate E. A1 - Zarbock, Alexander A1 - Göbel, Kerstin A1 - Meuth, Sven G. T1 - Platelet inhibition by low-dose acetylsalicylic acid reduces neuroinflammation in an animal model of multiple sclerosis JF - International Journal of Molecular Sciences N2 - Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4\(^+\) T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A\(_2\) were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS. KW - acetylsalicylic acid KW - experimental autoimmune encephalomyelitis KW - platelets KW - multiple sclerosis KW - thromboxane KW - glycoprotein VI KW - platelet factor 4 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284535 SN - 1422-0067 VL - 22 IS - 18 ER - TY - JOUR A1 - Viera, Jonathan Trujillo A1 - El-Merahbi, Rabih A1 - Nieswandt, Bernhard A1 - Stegner, David A1 - Sumara, Grzegorz T1 - Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight JF - PLoS ONE N2 - Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1\(^{-/-}\) and Pld2\(^{-/-}\) mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes. KW - enzyme regulation KW - insulin resistance KW - body weight KW - mouse models KW - bioenergetics KW - insulin KW - hypothalamus KW - adipose tissue Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179729 VL - 11 IS - 6 ER - TY - JOUR A1 - Timofeev, Oleg A1 - Schlereth, Katharina A1 - Wanzel, Michael A1 - Braun, Attila A1 - Nieswandt, Bernhard A1 - Pagenstecher, Axel A1 - Rosenwald, Andreas A1 - Elsässer, Hans-Peter A1 - Stiewe, Thorsten T1 - p53 DNA Binding Cooperativity Is Essential for Apoptosis and Tumor Suppression In Vivo JF - Cell Reports N2 - Four molecules of the tumor suppressor p53 assemble to cooperatively bind proapoptotic target genes. The structural basis for cooperativity consists of interactions between adjacent DNA binding domains. Mutations at the interaction interface that compromise cooperativity were identified in cancer patients, suggesting a requirement of cooperativity for tumor suppression. We report on an analysis of cooperativity mutant p53(E177R) mice. Apoptotic functions of p53 triggered by DNA damage and oncogenes were abolished in these mice, whereas functions in cell-cycle control, senescence, metabolism, and antioxidant defense were retained and were sufficient to suppress development of spontaneous T cell lymphoma. Cooperativity mutant mice are nevertheless highly cancer prone and susceptible to different oncogene-induced tumors. Our data underscore the relevance of DNA binding cooperativity for p53-dependent apoptosis and tumor suppression and highlight cooperativity mutations as a class of p53 mutations that result in a selective loss of apoptotic functions due to an altered quaternary structure of the p53 tetramer. KW - mutant p53 KW - senescence KW - mice KW - tumorigenesis KW - restoration KW - damage responses KW - antioxidant function KW - p53-inducible regulator KW - p53-dependent apoptosis KW - cell-cycle arrest Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122168 VL - 3 ER - TY - JOUR A1 - Stritt, Simon A1 - Nurden, Paquita A1 - Favier, Remi A1 - Favier, Marie A1 - Ferioli, Silvia A1 - Gotru, Sanjeev K. A1 - van Eeuwijk, Judith M.M. A1 - Schulze, Harald A1 - Nurden, Alan T. A1 - Lambert, Michele P. A1 - Turro, Ernest A1 - Burger-Stritt, Stephanie A1 - Matsushita, Masayuki A1 - Mittermeier, Lorenz A1 - Ballerini, Paola A1 - Zierler, Susanna A1 - Laffan, Michael A. A1 - Chubanov, Vladimir A1 - Gudermann, Thomas A1 - Nieswandt, Bernhard A1 - Braun, Attila T1 - Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg\(^{2+}\) homeostasis and cytoskeletal architecture JF - Nature Communications N2 - Mg\(^{2+}\) plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg\(^{2+}\)]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7\(^{fl/fl-Pf4Cre}\)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7\(^{fl/fl-Pf4Cre}\) MKs, which is rescued by Mg\(^{2+}\) supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice. KW - Cytoskeleton KW - homeostasisIon channels KW - thrombopoiesis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173843 VL - 7 ER - TY - JOUR A1 - Stegner, David A1 - van Eeuwijk, Judith M.M. A1 - Angay, Oğuzhan A1 - Gorelashvili, Maximilian G. A1 - Semeniak, Daniela A1 - Pinnecker, Jürgen A1 - Schmithausen, Patrick A1 - Meyer, Imke A1 - Friedrich, Mike A1 - Dütting, Sebastian A1 - Brede, Christian A1 - Beilhack, Andreas A1 - Schulze, Harald A1 - Nieswandt, Bernhard A1 - Heinze, Katrin G. T1 - Thrombopoiesis is spatially regulated by the bone marrow vasculature JF - Nature Communications N2 - In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts. KW - bone marrow KW - megakaryocytes KW - thrombopoiesis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170591 VL - 8 IS - 127 ER - TY - JOUR A1 - Stegner, David A1 - Klaus, Vanessa A1 - Nieswandt, Bernhard T1 - Platelets as modulators of cerebral ischemia/reperfusion injury JF - Frontiers in Immunology N2 - Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, the rapid recanalization of occluded cranial vessels is the primary therapeutic aim. However, experimental data (obtained using mostly the transient middle cerebral artery occlusion model) indicates that progressive stroke can still develop despite successful recanalization, a process termed “reperfusion injury.” Mounting experimental evidence suggests that platelets and T cells contribute to cerebral ischemia/reperfusion injury, and ischemic stroke is increasingly considered a thrombo-inflammatory disease. The interaction of von Willebrand factor and its receptor on the platelet surface, glycoprotein Ib, as well as many activatory platelet receptors and platelet degranulation contribute to secondary infarct growth in this setting. In contrast, interference with GPIIb/IIIa-dependent platelet aggregation and thrombus formation does not improve the outcome of acute brain ischemia but dramatically increases the susceptibility to intracranial hemorrhage. Here, we summarize the current understanding of the mechanisms and the potential translational impact of platelet contributions to cerebral ischemia/reperfusion injury. KW - thrombo-inflammation KW - ischemic stroke KW - platelet KW - glycoprotein Ibα KW - platelet degranulation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195748 SN - 1664-3224 VL - 10 IS - 2505 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Stetter, Christian A1 - Hirschberg, Markus A1 - Nieswandt, Bernhard A1 - Ernestus, Ralf-Ingo A1 - Heckmann, Manfred T1 - An experimental protocol for in vivo imaging of neuronal structural plasticity with 2-photon microscopy in mice JF - Experimental & Translational Stroke Medicine N2 - Introduction Structural plasticity with synapse formation and elimination is a key component of memory capacity and may be critical for functional recovery after brain injury. Here we describe in detail two surgical techniques to create a cranial window in mice and show crucial points in the procedure for long-term repeated in vivo imaging of synaptic structural plasticity in the mouse neocortex. Methods Transgenic Thy1-YFP(H) mice expressing yellow-fluorescent protein (YFP) in layer-5 pyramidal neurons were prepared under anesthesia for in vivo imaging of dendritic spines in the parietal cortex either with an open-skull glass or thinned skull window. After a recovery period of 14 days, imaging sessions of 45–60 min in duration were started under fluothane anesthesia. To reduce respiration-induced movement artifacts, the skull was glued to a stainless steel plate fixed to metal base. The animals were set under a two-photon microscope with multifocal scanhead splitter (TriMScope, LaVision BioTec) and the Ti-sapphire laser was tuned to the optimal excitation wavelength for YFP (890 nm). Images were acquired by using a 20×, 0.95 NA, water-immersion objective (Olympus) in imaging depth of 100–200 μm from the pial surface. Two-dimensional projections of three-dimensional image stacks containing dendritic segments of interest were saved for further analysis. At the end of the last imaging session, the mice were decapitated and the brains removed for histological analysis. Results Repeated in vivo imaging of dendritic spines of the layer-5 pyramidal neurons was successful using both open-skull glass and thinned skull windows. Both window techniques were associated with low phototoxicity after repeated sessions of imaging. Conclusions Repeated imaging of dendritic spines in vivo allows monitoring of long-term structural dynamics of synapses. When carefully controlled for influence of repeated anesthesia and phototoxicity, the method will be suitable to study changes in synaptic structural plasticity after brain injury. KW - 2-photon microscopy KW - Fluorescence KW - In vivo imaging KW - Neurons KW - Cranial window KW - Mouse model Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96908 UR - http://www.etsmjournal.com/content/5/1/9 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Kraft, Peter A1 - Bieber, Michael A1 - Kollikowski, Alexander M. A1 - Schulze, Harald A1 - Nieswandt, Bernhard A1 - Pham, Mirko A1 - Stegner, David A1 - Stoll, Guido T1 - Targeting platelet GPVI plus rt-PA administration but not α2β1-mediated collagen binding protects against ischemic brain damage in mice JF - International Journal of Molecular Science N2 - Platelet collagen interactions at sites of vascular injuries predominantly involve glycoprotein VI (GPVI) and the integrin α2β1. Both proteins are primarily expressed on platelets and megakaryocytes whereas GPVI expression is also shown on endothelial and integrin α2β1 expression on epithelial cells. We recently showed that depletion of GPVI improves stroke outcome without increasing the risk of cerebral hemorrhage. Genetic variants associated with higher platelet surface integrin α2 (ITGA2) receptor levels have frequently been found to correlate with an increased risk of ischemic stroke in patients. However until now, no preclinical stroke study has addressed whether platelet integrin α2β1 contributes to the pathophysiology of ischemia/reperfusion (I/R) injury. Focal cerebral ischemia was induced in C57BL/6 and Itga2\(^{−/−}\) mice by a 60 min transient middle cerebral artery occlusion (tMCAO). Additionally, wild-type animals were pretreated with anti-GPVI antibody (JAQ1) or Fab fragments of a function blocking antibody against integrin α2β1 (LEN/B). In anti-GPVI treated animals, intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment was applied immediately prior to reperfusion. Stroke outcome, including infarct size and neurological scoring was determined on day 1 after tMCAO. We demonstrate that targeting the integrin α2β1 (pharmacologic; genetic) did neither reduce stroke size nor improve functional outcome on day 1 after tMCAO. In contrast, depletion of platelet GPVI prior to stroke was safe and effective, even when combined with rt-PA treatment. Our results underscore that GPVI, but not ITGA2, is a promising and safe target in the setting of ischemic stroke. KW - ischemic stroke KW - integrin α2 KW - glycoprotein VI KW - recombinant tissue-type plasminogen activator KW - intracranial bleeding KW - transient middle cerebral artery occlusion Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201700 SN - 1422-0067 VL - 20 IS - 8 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Guthmann, Josua A1 - Stoll, Guido A1 - Nieswandt, Bernhard A1 - Kraft, Peter A1 - Kleinschnitz, Christoph T1 - Blocking of platelet glycoprotein receptor Ib reduces “thrombo-inflammation” in mice with acute ischemic stroke JF - Journal of Neuroinflammation N2 - Background: Ischemic stroke causes a strong inflammatory response that includes T cells, monocytes/macrophages, and neutrophils. Interaction of these immune cells with platelets and endothelial cells facilitates microvascular dysfunction and leads to secondary infarct growth. We recently showed that blocking of platelet glycoprotein (GP) receptor Ib improves stroke outcome without increasing the risk of intracerebral hemorrhage. Until now, it has been unclear whether GPIb only mediates thrombus formation or also contributes to the pathophysiology of local inflammation. Methods: Focal cerebral ischemia was induced in C57BL/6 mice by a 60-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab). Rat immunoglobulin G (IgG) Fab was used as control treatment. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 1 after tMCAO. Results: Blocking of GPIb reduced stroke size and improved functional outcome on day 1 after tMCAO without increasing the risk of intracerebral hemorrhage. As expected, disruption of GPIb-mediated pathways in platelets significantly reduced thrombus burden in the cerebral microvasculature. In addition, inhibition of GPIb limited the local inflammatory response in the ischemic brain as indicated by lower numbers of infiltrating T cells and macrophages and lower expression levels of inflammatory cytokines compared with rat IgG Fab-treated controls. Conclusion: In acute ischemic stroke, thrombus formation and inflammation are closely intertwined (“thrombo-inflammation”). Blocking of platelet GPIb can ameliorate thrombo-inflammation. KW - ischemic stroke KW - occlusion KW - transient middle cerebral artery KW - glycoprotein receptor Ib KW - thrombo-inflammation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157582 VL - 14 IS - 18 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Bieber, Michael A1 - Franke, Maximilian A1 - Kollikowski, Alexander M. A1 - Stegner, David A1 - Heinze, Katrin G. A1 - Nieswandt, Bernhard A1 - Pham, Mirko A1 - Stoll, Guido T1 - Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice JF - Journal of Neuroinflammation N2 - Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1\(^{−/−}\) mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization. KW - ischemic penumbra KW - glycoprotein receptor Ib KW - T-cells KW - ischemic stroke KW - thrombo-inflammation KW - middle cerebral artery occlusion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259172 VL - 18 IS - 1 ER - TY - JOUR A1 - Schanbacher, Constanze A1 - Bieber, Michael A1 - Reinders, Yvonne A1 - Cherpokova, Deya A1 - Teichert, Christina A1 - Nieswandt, Bernhard A1 - Sickmann, Albert A1 - Kleinschnitz, Christoph A1 - Langhauser, Friederike A1 - Lorenz, Kristina T1 - ERK1/2 activity is critical for the outcome of ischemic stroke JF - International Journal of Molecular Sciences N2 - Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood–brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke. KW - ERK1/2 KW - tMCAO KW - ischemic stroke KW - RKIP Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283991 SN - 1422-0067 VL - 23 IS - 2 ER - TY - JOUR A1 - Regn, Michael A1 - Laggerbauer, Bernhard A1 - Jentzsch, Claudia A1 - Ramanujam, Deepak A1 - Ahles, Andrea A1 - Sichler, Sonja A1 - Calzada-Wack, Julia A1 - Koenen, Rory R. A1 - Braun, Attila A1 - Nieswandt, Bernhard A1 - Engelhardt, Stefan T1 - Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium JF - Journal of Molecular and Cellular Cardiology N2 - A key response of the myocardium to stress is the secretion of factors with paracrine or endocrine function. Intriguing in this respect is peptidase inhibitor 16 (PI16), a member of the CAP family of proteins which we found to be highly upregulated in cardiac disease. Up to this point, the mechanism of action and physiological function of PI16 remained elusive. Here, we show that PI16 is predominantly expressed by cardiac fibroblasts, which expose PI16 to the interstitium via a glycophosphatidylinositol (-GPI) membrane anchor. Based on a reported genetic association of PI16 and plasma levels of the chemokine chemerin, we investigated whether PI16 regulates post-translational processing of its precursor pro-chemerin. PI16-deficient mice were engineered and found to generate higher levels of processed chemerin than wildtype mice. Purified recombinant PI16 efficiently inhibited cathepsin K, a chemerin-activating protease, in vitro. Moreover, we show that conditioned medium from PI16-overexpressing cells impaired the activation of pro-chemerin. Together, our data indicate that PI16 suppresses chemerin activation in the myocardium and suggest that this circuit may be part of the cardiac stress response. KW - Cells KW - Activation KW - Purification KW - Protein KW - Peptidase inhibitor 16 (PI16) KW - Identification KW - Inflammation KW - Adipokine KW - Metabolism KW - Heart KW - Mice KW - Chemerin KW - RARRES2 KW - TIG2 KW - Protease inhibition KW - Chemerin processing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187039 VL - 99 ER - TY - JOUR A1 - Popp, Michael A1 - Thielman, Ina A1 - Nieswandt, Bernhard A1 - Stegner, David T1 - Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5) JF - PLoS One N2 - Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5), a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice. KW - platelet activation KW - fibrinogen KW - integrins KW - platelets KW - thrombin KW - flow cytometry KW - platelet aggregation KW - blood Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125724 VL - 10 IS - 7 ER - TY - JOUR A1 - Ponnuswamy, Padmapriya A1 - Schröttle, Angelika A1 - Ostermeier, Eva A1 - Grüner, Sabine A1 - Huang, Paul L. A1 - Ertl, Georg A1 - Hoffmann, Ulrich A1 - Nieswandt, Bernhard A1 - Kuhlencordt, Peter J. T1 - eNOS Protects from Atherosclerosis Despite Relevant Superoxide Production by the Enzyme in apoE\(^{-/-}\) Mice JF - PLoS One N2 - Background: All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial-(L/E) and platelet/endothelial-(P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. Principal Findings: Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE\(^{-/-}\)/eNOS\(^{-/-}\)), while P/E-interactions did not differ, compared to apoE\(^{-/-}\). eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE\(^{-/-}\) vessels. Conclusion: Overt plaque formation, increased vascular inflammation and L/E-interactions are associated with significant reduction of superoxide production in apoE\(^{-/-}\)/eNOS\(^{-/-}\) vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE\(^{-/-}\) atherosclerosis but does not negate the enzyme's strong protective effects. KW - platelet adhesion KW - lesion formation KW - nitric oxide synthase KW - endothelial cell interactions KW - double knockout mice KW - apolipoprotein E KW - deficient mice KW - in vivo KW - accelerated atherosclerosis KW - leukocyte adhesion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134866 VL - 7 IS - 1 ER - TY - JOUR A1 - Pollitt, Alice Y. A1 - Poulter, Natalie S. A1 - Gitz, Eelo A1 - Navarro-Nuñez, Leyre A1 - Wang, Ying-Jie A1 - Hughes, Craig E. A1 - Thomas, Steven G. A1 - Nieswandt, Bernhard A1 - Douglas, Michael R. A1 - Owen, Dylan M. A1 - Jackson, David G. A1 - Dustin, Michael L. A1 - Watson, Steve P. T1 - Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells* JF - The Journal of Biological Chemistry N2 - The interaction of CLEC-2 on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signalling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signalling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the centre of the platelet to form a single structure. Fluorescence life-time imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilised Podoplanin using direct stochastic optical reconstruction microscopy (dSTORM). These findings provide mechanistic insight by which CLEC-2 signalling promotes adhesion to Podoplanin and regulation of Podoplanin signalling thereby contributing to lymphatic vasculature development. KW - endothelial cell KW - lipid bilayer KW - platelet receptor KW - tyrosine-protein kinase KW - CLEC-2 ITAM KW - podoplanin KW - Src family KW - kinase Syk Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120770 VL - 289 IS - 52 ER - TY - JOUR A1 - Pham, Mirko A1 - Helluy, Xavier A1 - Kleinschnitz, Christoph A1 - Kraft, Peter A1 - Bartsch, Andreas J. A1 - Jakob, Peter A1 - Nieswandt, Bernhard A1 - Bendszus, Martin A1 - Guido, Stoll T1 - Sustained Reperfusion after Blockade of Glycoprotein-Receptor-Ib in Focal Cerebral Ischemia: An MRI Study at 17.6 Tesla JF - PLoS ONE N2 - Background: Inhibition of early platelet adhesion by blockade of glycoprotein-IB (GPIb) protects mice from ischemic stroke. To elucidate underlying mechanisms in-vivo, infarct development was followed by ultra-high field MRI at 17.6 Tesla. Methods: Cerebral infarction was induced by transient-middle-cerebral-artery-occlusion (tMCAO) for 1 hour in C57/BL6 control mice (N = 10) and mice treated with 100 mg Fab-fragments of the GPIb blocking antibody p0p/B 1 h after tMCAO (N = 10). To control for the effect of reperfusion, additional mice underwent permanent occlusion and received anti-GPIb treatment (N = 6; pMCAO) or remained without treatment (N = 3; pMCAO). MRI 2 h and 24 h after MCAO measured cerebral-blood-flow (CBF) by continuous arterial-spin labelling, the apparent-diffusion-coefficient (ADC), quantitative-T2 and T2-weighted imaging. All images were registered to a standard mouse brain MRI atlas and statistically analysed voxel-wise, and by cortico-subcortical ROI analysis. Results: Anti-GPIb treatment led to a relative increase of postischemic CBF vs. controls in the cortical territory of the MCA (2 h: 44.2 +/- 6.9 ml/100g/min versus 24 h: 60.5 +/- 8.4; p = 0.0012, F((1,18)) = 14.63) after tMCAO. Subcortical CBF 2 h after tMCAO was higher in anti-GPIb treated animals (45.3 +/- 5.9 vs. controls: 33.6 +/- 4.3; p = 0.04). In both regions, CBF findings were clearly related to a lower probability of infarction (Cortex/Subcortex of treated group: 35%/65% vs. controls: 95%/100%) and improved quantitative-T2 and ADC. After pMCAO, anti-GPIb treated mice developed similar infarcts preceded by severe irreversible hypoperfusion as controls after tMCAO indicating dependency of stroke protection on reperfusion. Conclusion: Blockade of platelet adhesion by anti-GPIb-Fab-fragments results in substantially improved CBF early during reperfusion. This finding was in exact spatial correspondence with the prevention of cerebral infarction and indicates in-vivo an increased patency of the microcirculation. Thus, progression of infarction during early ischemia and reperfusion can be mitigated by anti-platelet treatment. KW - Von-Willebrand-factor KW - Experimental stroke KW - Magnetic-resonance KW - Arterial water KW - Brain KW - Perfusion KW - Mice KW - Inflammation KW - Coefficient KW - mechanisms Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142608 VL - 6 IS - 4 ER - TY - JOUR A1 - Pfeiffer, Verena A1 - Götz, Rudolf A1 - Xiang, Chaomei A1 - Camarero, Guadelupe A1 - Braun, Attila A1 - Zhang, Yina A1 - Blum, Robert A1 - Heinsen, Helmut A1 - Nieswandt, Bernhard A1 - Rapp, Ulf R. T1 - Ablation of BRaf Impairs Neuronal Differentiation in the Postnatal Hippocampus and Cerebellum JF - PLoS ONE N2 - This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures. KW - granule cells KW - hippocampus KW - neurons KW - neuronal dendrites KW - embryos KW - dentate gyrus KW - neuronal differentiation KW - cerebellum Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130304 VL - 8 IS - 3 ER - TY - JOUR A1 - Nieswandt, Bernhard A1 - Morowski, Martina A1 - Brachs, Sebastian A1 - Mielenz, Dirk A1 - Dütting, Sebastian T1 - The Adaptor Protein Swiprosin-1/EFhd2 Is Dispensable for Platelet Function in Mice N2 - Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity, but may also cause pathological vessel occlusion. Reorganizations of the platelet cytoskeleton and agonist-induced intracellular Ca2+-mobilization are crucial for platelet hemostatic function. EF-hand domain containing 2 (EFhd2, Swiprosin-1) is a Ca2+-binding cytoskeletal adaptor protein involved in actin remodeling in different cell types, but its function in platelets is unknown. Objective Based on the described functions of EFhd2 in immune cells, we tested the hypothesis that EFhd2 is a crucial adaptor protein for platelet function acting as a regulator of Ca2+-mobilization and cytoskeletal rearrangements. Methods and Results We generated EFhd2-deficient mice and analyzed their platelets in vitro and in vivo. Efhd2-/- mice displayed normal platelet count and size, exhibited an unaltered in vivo life span and showed normal Ca2+-mobilization and activation/aggregation responses to classic agonists. Interestingly, upon stimulation of the immunoreceptor tyrosine-based activation motif-coupled receptor glycoprotein (GP) VI, Efhd2-/- platelets showed a slightly increased coagulant activity. Furthermore, absence of EFhd2 had no significant impact on integrin-mediated clot retraction, actomyosin rearrangements and spreading of activated platelets on fibrinogen. In vivo EFhd2-deficiency resulted in unaltered hemostatic function and unaffected arterial thrombus formation. Conclusion These results show that EFhd2 is not essential for platelet function in mice indicating that other cytoskeletal adaptors may functionally compensate its loss. KW - adaptor protein Swiprosin-1/EFhd2 KW - platelets KW - platelet activation KW - platelet aggregation KW - cytoskeleton KW - thrombin KW - blood KW - actins KW - collagens Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113316 ER - TY - JOUR A1 - Neagoe, Raluca A. I. A1 - Gardiner, Elizabeth E. A1 - Stegner, David A1 - Nieswandt, Bernhard A1 - Watson, Steve P. A1 - Poulter, Natalie S. T1 - Rac inhibition causes impaired GPVI signalling in human platelets through GPVI shedding and reduction in PLCγ2 phosphorylation JF - International Journal of Molecular Sciences N2 - Rac1 is a small Rho GTPase that is activated in platelets upon stimulation with various ligands, including collagen and thrombin, which are ligands for the glycoprotein VI (GPVI) receptor and the protease-activated receptors, respectively. Rac1-deficient murine platelets have impaired lamellipodia formation, aggregation, and reduced PLCγ2 activation, but not phosphorylation. The objective of our study is to investigate the role of Rac1 in GPVI-dependent human platelet activation and downstream signalling. Therefore, we used human platelets stimulated using GPVI agonists (collagen and collagen-related peptide) in the presence of the Rac1-specific inhibitor EHT1864 and analysed platelet activation, aggregation, spreading, protein phosphorylation, and GPVI clustering and shedding. We observed that in human platelets, the inhibition of Rac1 by EHT1864 had no significant effect on GPVI clustering on collagen fibres but decreased the ability of platelets to spread or aggregate in response to GPVI agonists. Additionally, in contrast to what was observed in murine Rac1-deficient platelets, EHT1864 enhanced GPVI shedding in platelets and reduced the phosphorylation levels of PLCγ2 following GPVI activation. In conclusion, Rac1 activity is required for both human and murine platelet activation in response to GPVI-ligands, but Rac1’s mode of action differs between the two species. KW - platelets KW - Rac1 KW - glycoprotein VI KW - EHT1864 KW - GPVI shedding KW - phospholipase C gamma 2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284350 SN - 1422-0067 VL - 23 IS - 7 ER -