TY - THES A1 - Uthe, Henriette T1 - Analyse des Interaktoms des Mediatorkomplexes und seiner posttranslationalen Modifikationen in \(Saccharomyces\) \(Cerevisae\) mittels Massenspektrometrie T1 - Proteomic Analysis of the Mediator Complex Interactome and it´s posttranslational Modifications in \(Saccharomyces\) \(Cerevisae\) N2 - Eukaryotic messenger RNA (mRNA) synthesis catalyzed by the RNA Polymerase II is the central and critical process for the regulation of gene expression. Several decades of research unearthed many details about this essential process of high complexity and dynamic. The mediator complex turned out to be crucial for the regulation of Pol II mediated transcription, especially the process of initiation. It functions as an interface between the general transcription machinery and multiple DNA binding transcriptional regulators. Binding these regulators via its tail module and binding the polymerase II via its head module, the mediator forms a bridge between upstream activating sequences and the core promotor and initiates the assembling of the Pre-Initiation complex consisting of the polymerase II and the general transcription factors. However, particularly the last years of research suggest the mediator complex within many other functions including transcription elongation, gene looping and chromatin remodeling. Considering the facts, that the mediator (a) consist of 25 subunits, which are partially flexible associated, (b) shows a flexible intrinsic structure and (c) is highly and dynamically phosphorylated it becomes easy to imagineplausible that the mediator complex meets all this functions, by serving as a transcriptional platform. In context of this thesis, and it was possible to “illustrate” the mediator within its versatile tasks and functions by presenting the most comprehensive analysis of the Mediator complex interactome to date. By optimizing the conditions of cell lysis and co-immunoprecipitation it was possible to preserve even transient and labile protein-protein interactions. The use of metabolic labeling (15N) in the control experiment, allowed us to distinguish between specific and non-specific captured proteins. In combination with high performance mass spectrometry, more than 400 proteins and even complete protein complexes interacting with the mediator complex could be identified, naming RNA-Polymerase II, all general transcription factors the SAGA complex, chromatin remodeling complexes and highly acetylated histones. Furthermore, many candidates where identified playing a role in co-transcriptional processes of mRNA, such as splicing, mRNA-decapping, mRNA transport and decay. This analysis not only confirmed several interactions , already can be found in the literature, but furthermore provide clear evidence, that mediator complex interacts not only with the RNA-Polymerase II, but also with the RNA Polymerase I and III. Next to the high numbers of potential known and unknown interacting proteins, it could be shown, that the interactome is highly dynamic and sensitive to detergent. N2 - Die Synthese der mRNA durch die RNA-Polymerase II ist der zentrale und kritische Prozess im Rahmen der Transkriptionsregulation Protein-kodierender Gene. Viele Jahrzehnte der intensiven Erforschung brachten viele Details über diesen Mechanismus zu Tage, der von einer unglaublichen Komplexität und Dynamik geprägt ist. Dabei stellte sich heraus, dass der Mediatorkomplex eine zentrale Rolle bei der Regulation der Polymerase II-abhängigen Transkription spielt, im Besonderen der Initiation. In der Funktion einer Schnittstelle verknüpft er die allgemeine Transkriptionsmaschinerie mit den Gen- spezifischen Transkriptionsregulatoren. Durch die Interaktion des Schwanzmoduls mit diesen Regulatoren und der Interaktion des Kopfmoduls mit der Polymerase II verbindet er wie eine Brücke die oberhalb des Promotors liegenden Aktivatorsequenzen mit dem Kernpromotor und initiiert so die Ausbildung des Pre-Initiationskomplexes. Darüber hinaus mehren sich gerade in den letzten Jahren die Hinweise darauf, dass der Mediator auch noch an anderen Prozessen der Transkription beteiligt ist. Zu diesen gehören z.B. die Elongation, die Ausbildung von Genschlaufen oder auch der Umbau der Chromatinstruktur. In Anbetracht der Tatsachen, dass der Mediator (a) aus bis zu 25 Untereinheiten mit flexibler Zusammensetzung besteht, (b) eine flexible Struktur besitzt und (c) umfassend und dynamisch über posttranslationale Modifikationen modifiziert ist, erscheint es durchaus möglich, dass der Mediator all diese Funktionen ausfüllt und die Rolle einer allgemeinen Transkriptionsplattform einnimmt. Im Zusammenhang mit dieser Dissertationsschrift ist es gelungen, den Mediator innerhalb all dieser Funktionen „abzubilden“ und die bisher umfassendste Interaktomanalyse dieses Komplexes zu präsentieren. Durch die optimierten Bedingungen der Zelllyse und Co-Immunopräzipitation, gelang es auch transiente Interaktionspartner zu isolieren. Durch das metabolische Markieren der Wildtypkontrolle konnten außerdem unspezifische und spezifische Interaktionen eindeutig voneinander unterschieden werden. Über 400 Proteine wurden als signifikante Interaktionspartner des Mediators identifiziert. Viele dieser Proteine konnten als vollständige Komplexe zusammengefasst werden, z.B die RNA-Polymerase II, alle allgemeinen Transkriptionsfaktoren, der SAGA-Komplex, viele Komplexe des Chromatin Remodelings und stark acetylierte Histone. Viele weitere Interaktionspartner spielen zudem eine Rolle bei der co-transkriptionalen Prozessierung der mRNA, wie z.B dem Splicing, dem mRNA-decapping oder Abbau. Darüber hinaus gibt es starke Hinweise darauf, dass der Mediator auch mit der Polymerase I und III interagiert und an der ribosomalen Biogenese beteiligt ist. Weitere Analysen zeigten, dass das Interaktom zudem hochdynamisch ist KW - Mediator Komplex KW - Massenspektrometrie/Proteomics KW - Protein-Protein Interaktion KW - Metabolic Labeling KW - Proteomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162619 ER - TY - THES A1 - Piechaczek, Katharine T1 - Untersuchungen zum Einfluß der Pathogenitätsinseln I536 und II536 auf die Genexpression des uropathogenen Escherichia coli Stammes 536 T1 - Studies on the influence of the pathogenicity islands I536 and II536 on the gene expression of the gene expression of the uropathogenic Escherichia coli strain 536 N2 - Escherichia coli wird als der häufigste Erreger von Harnwegsinfektionen des Menschen beschrieben. Um die Krankheit auslösen zu können, benötigen die Bakterien ganz bestimmte Eigenschaften, die als Virulenzfaktoren bezeichnet werden und durch die sie sich von apathogenen Stämmen unterscheiden. Der uropathogene E. coli Stamm 536 (O6:K15:H31) exprimiert verschiedene Virulenzfaktoren wie a-Hämolysin, die Adhäsine S-, P-related (Prf) und Typ 1-Fimbrien sowie das Kapselantigen K15. Außerdem wurden auch Enterobaktin- und Yersiniabaktin-Produktion sowie Serumresistenz nachgewiesen. Die Ausprägung der Virulenz hängt unter anderem mit dem Vorhandensein von Pathogenitätsinseln (PAI I536-V536) zusammen, die mit seltenen tRNA-Genen assoziiert sind. Die Deletion der Inseln PAI I536 und PAI II536 führt zum Verlust der Virulenz und zur Zerstörung der entsprechenden tRNA Gene. Es wurde festgestellt, daß die leuX-kodierte tRNA5Leu, die mit der PAI II536 assoziiert ist, einen Einfluß auf die Expression von Typ 1-Fimbrien sowie auf die Serumresistenz, Motilität und die Enterobaktin- und a-Hämolysin-Produktion hat. Ziel dieser Arbeit war die Analyse der Bedeutung der leuX-kodierten tRNA5Leu und der Pathogenitätsinseln I536 und II536 für die Expression von Proteinen sowie Typ 1-Fimbrien bei dem E. coli Stamm 536. Dazu wurde zunächst eine Proteomanalyse durchgeführt. Mit der Hilfe von 2D-Gelen wurde der Einfluß von leuX-kodierten tRNA5Leu und PAI I536 und PAI II536 auf die Expression verschiedener Proteine im E. coli Stamm 536 (PAI I536+, PAI II536+, leuX+) und seinen Mutanten: 536-21 (PAI I536-, PAI II536-, leuX-), 536D102 (PAI I536+, PAI II536+, leuX-) und 536R3 (PAI I536-, PAI II536-, leuX+) untersucht. Mit Hilfe von präparativen Gelen konnten in den zytosolischen Fraktionen 39 Unterschiede in der Expression von Proteinen nachgewiesen werden. Von diesen differentiell exprimierten Proteinen wurden 37 mit Hilfe von MALDI-TOF-MS identifiziert. Die zwei weiteren Proteine konnten nicht identifiziert werden. In den Kulturüberstandsfraktionen der untersuchten Stämme konnten drei Unterschiede in der Expression von Proteine nachgewiesen werden. Außerdem wurde der Einfluß der leuX-kodierten tRNA5Leu auf die Expression der Membranproteine der jeweiligen Stämme untersucht. Zu diesem Zwecke wurden sowohl ein- wie auch zweidimensionale Gele durchgeführt. Mit Hilfe von zweidimensionalen Gelen konnten zwischen den untersuchten Stämmen mehrere Unterschiede in der Expression von Proteinen festgestellt werden. Dabei konnten vier Unterschiede in der Proteinexpression detektiert werden. Mit Hilfe der 2 D-Gelelektrophorese wurde ein leuX-abhängiges Protein (YgaG), das ein Analogon des LuxS-Proteins ist, gefunden. Das LuxS-Protein ist ein Bestandteil des "Quorum sensing"-Systems von Vibrio harveyi und wird in ähnlicher Form bei vielen Bakterien beschrieben. Sein Einfluß auf die Pathogenität wurde bei vielen Bakterien beschrieben. Aus diesem Grund wurde eine ygaG-Mutante im E. coli Stamm 536 hergestellt. Anschließend wurde der Einfluß des YgaG-Proteins auf die Expression von Virulenzfaktoren überprüft und ein Proteomvergleich zwischen dem Wildtyp Stamm E. coli 536 und der ygaG-Mutante wurde durchgeführt. Die Expression der bekannten Virulenzfaktoren wurde von YgaG nicht beeinflußt. Weiterhin wurden Transkriptionsfusionen zwischen den Promotoren der fimB- und fimE-Gene mit dem promotorlosen ß-Galaktosidase-Gen (lacZ) konstruiert. Es sollte damit die Frage beantwortet werden, ob die leuX-kodierte tRNA5Leu als potentieller Regulator die Transkription von Typ 1-Fimbrien beeinflußt. Es konnten jedoch keine signifikanten Unterschiede in der Transkription von fimB und fimE zwischen dem Wildtyp Stamm 536 und der leuX-Mutante 536D102 festgestellt werden. N2 - Escherichia coli is one of the common causes of urinary tract infections. Pathogenic E. coli differ from non-pathogenic E. coli variants by the presence of certain virulence factors which contribute to their ability to cause disease. The uropathogenic E. coli strain 536 (O6:K15:H31) is able to produce different virulence factors such as a-hemolysin, fimbrial adhesins (P-, type 1 and S-fimbriae) and specific capsules. Furthermore the bacteria produce iron uptake systems like enterobactin and yersiniabactin and have the capacity to survive in human serum. The development of pathogenicity is connected to pathogenicity islands (PAI I536-V536). All four PAIs are associated with tRNA genes. The deletion of PAI I536 and PAI II536 results in the truncation of the associated tRNA gene and loss of virulence. The deletion of PAI II536 results in the truncation of the leuX gene. PAI II536 as well as leuX deletion mutants show a reduced production of type 1 fimbriae, flagellae and of the iron uptake system enterobactin. Furthermore, they show delayed hemolysin production and a reduced serum resistance. Additionally, the leuX-encoded tRNA5Leu may also regulate the expression of various other genes. The aim of this work was the further characterization and analysis of the role of PAI I536/II536 and of the tRNA5Leu for protein expression as well as for the regulation and expression of two site-specific recombinases, FimB and FimE, of the E. coli strain 536. Firstly, the protein expression patterns of E. coli 536 and different derivatives were studied. Differences in the protein expression pattern of the wild-type strain E. coli 536, its mutants 536-21 (PAI I536-, PAI II536-, leuX-), 536D102 (PAI I536+, PAI II536+, leuX-) and strain 536R3 (PAI I536-, PAI II536-, leuX+) were analyzed by two-dimensional polyacrylamide gel electrophoresis. With the help of preparative 2 D-gel electrophoresis 39 differentially expressed intracellular proteins could be identified. The identities of 37 proteins have been determined by MALDI-TOF mass spectrometry in Halle. Two of these proteins show no matches in sequence databases. The preparations of the culture supernatants resulted in 2 D proteinpatterns from which three protein spots whose expression is markedly altered in the different strains are identified. The influence of the tRNA5Leu on the expression of outer membrane proteins was also studied. Differences in the protein expression patterns of the wild-type strain 536 and the mutants were analyzed by one- and two-dimensional gel electrophoresis. The analysis of 2 D protein patterns of outer membrane preparation resulted in the detection of some proteinspots whose expression was altered in the different strain backgrounds. It was identified during the proteom analysis that tha expression of the YgaG protein was shown to be reduced in a leuX-negative background. This protein shows a strong homology to the LuxS protein of Vibrio harveyi. The LuxS protein is a component of the quorum sensing system. It has been shown that many bacteria express proteins similar to LuxS of V. harveyi and that quorum sensing may play a role in pathogenicity. To investigate whether YgaG contributes to the virulence of the E. coli strain 536, a ygaG deletion mutant was made. In addition, differences in the protein expression pattern of the wild-type strain E. coli 536 and the ygaG mutant were analyzed by 2 D gel electrophoresis. Whether YgaG contributes to the virulence of the E. coli Strain 536 has not be investigated. In order to get a deeper insight into the role of the tRNA5Leu as a potential regulator of the expression of the typ 1-fimbriae, a transcriptional fusion between the promotor area of fimB and fimE and the lacZ gene lacking its own promotor was constructed. However the transcription of fimB and fimE did not show any significant differences between the wild-type strain 536 and the leuX-mutant 536D102. KW - Escherichia coli KW - Harnwegskrankheit KW - Virulenzfaktor KW - Proteom KW - Proteom KW - Pathogenitätsinseln KW - leuX-tRNA KW - uropathogener E. coli Stamm 536 KW - Proteomics KW - Pathogenicity islands KW - leuX-tRNA KW - uropathogenic E. coli strain 536 Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1862 ER - TY - THES A1 - Heinig, Katja T1 - Massenspektrometrische Identifizierung und Charakterisierung von posttranslationalen Modifikationen bei pathologischen freien Antikörperleichtketten T1 - Identification of posttranslational modifications in pathological free light chains using mass spectrometry N2 - In dieser Arbeit wurden die freien Antikörperleichtketten von Patienten mit Multiplen Myelom bzw. mit Multiplen Myelom und AL-Amyloidose auf das Auftreten von posttranslationalen Modifikationen mit der Hilfe von MS/MS-Spektren analysiert. Beide Patientengruppen zeichnen sich durch eine Überproduktion von monoklonalen Antikörperleichtketten aus, wobei diese bei Multiplen-Myelom-Patienten löslich und bei den AL-Amyloidose-Patienten unlöslich vorliegen. Zur Vorbereitung der massenspektrometrischen Messungen wurden die FLCs aus den Knochenmarksüberständen der Patienten isoliert. Dafür wurde eine 2-Schritt-Aufarbeitungsmethode etabliert, bei der mit Hilfe einer Affinitätschromatographie und einer präparativen SDS-PAGE die FLCs aus einer komplexen Matrix isoliert werden konnten. Mit Hilfe der MS/MS-Messungen konnten Sulfonierungen, Methylierungen, Acetylierungen, Oxidierungen und eine O-Glykosylierung identifiziert werden. In einem weiteren Schritt wurden mittels Varianzanalyse Sequenzen von AL-Amyloidose- und Multiplen-Myelom-Patienten sowie von Kontrollprobanten hinsichtlich der Verteilung der Aminosäuren statistisch analysiert. Dabei konnten mehrere Stellen im FLC-Peptid identifiziert werden, an denen bestimmte Aminosäuren in Abhängigkeit der Subgruppe signifikant unterschiedlich vorkommen. N2 - This work analyzed posttranslational modifications of pathological free light chains (FLC) from patients who suffer from multiple myeloma or multiple myeloma and AL amyloidosis. Both patient groups show an overproduction of free light chains which are soluble in multi- ple myeloma patients and insoluble in AL amyloidosis patients. One reason for the different solubility of the free light chains may be the appearance of posttranslational modifications. In order to identity posttranslational modifications FLCs from bone marrow supernatant were isolated and mass spectrometrically analyzed using Orbitrap technology. All measurements were done with three samples of each patient subgroup. For the FLC purification a 2-step method was established which isolates FLCs with affinity chromatography and preparative SDS-PAGE. This method enables the purification of the FLCs from a complex matrix where the FLCs may not be the main component. Before mass spectrometric analyses the amino acid sequences of the FLCs were determined via PCR using FLC-specific primers. The subsequent mass spectrometric analyses verified between 92 % and 100 % of the amino acid sequences. The analysis of posttranslational modifications identified for each patient a sulfonation at cysteine C194 whose identity and localization were verified with HCD and ETD fragmen- tation mass spectrometry technology. A similar cysteine sulfonation of FLCs was found by Connors et al. [10] who identified an identical PTM on cysteine C214 in FLCs from AL amyloidosis patients. However, a sulfonation on cysteine C194 and in FLCs from multiple myeloma patients was not published before. Furthermore, a methylation of cysteine C194 was found for each sample. As for the sul- fonation, no disease-specific appearance of methylation could be revealed. This may be a consequence of a limited number of available samples. In addition, a GlcNAc-glycosylation in the N-terminus of the variable region was found for the patients SP 1070, WS 1199 and GI 1206. An exact localization of the PTM was not possible because of the loss of the PTM during HCD fragmentation and the lack of conve- nient ETD spectra. Moreover FLC sequences were analyzed statistically for the distribution of amino acids. Therefore, a multiple sequence alignment with sequences from multiple myeloma and AL amyloidosis patients as with sequences from healthy control group individuals was done. Subsequently, for each position in FLC sequence the most frequent amino acids were deter- mined and the frequencies of being the most frequent amino acid for each subgroup were calculated. As a result, positions 56 and 73 were identified where serine respectively leucine occur statistcally significantly more often in the control group than in the multiple myeloma or the AL amyloidosis subgroup. The comparison of the frequencies of the multiple myeloma and AL amyloidosis subgroup revealed significant differences at the positions 31 and 61. At the position 31 in AL amyloidosis subgroup asparagine appears more often than in the mul- tiple myeloma subgroup which may indicate that asparagine at this position enhances the bias to FLC accumulation. The position 31 was also described as influential by Stevens et al. [25], although in his studies an aspartic acid at this position increases the bias to aggregation. At position 61 an arginine exists more often in the multiple myeloma than in the AL amy- loidosis subgroup where the missing of an arginine at this position seems to enhance the tendency for FLC accumulation. This result is consistent with the findings by Hurle et al. [27, 28] and may be a result of a missing salt bridge from arginine R61 to aspartic acid D82. KW - Massenspektrometrie KW - Amyloidose KW - Plasmozytom KW - Posttranslationale Änderung KW - Mass spectrometry KW - Multiple Myeloma KW - AL amyloidosis KW - Posttranslational modification KW - Proteomics KW - AL-Amyloidose KW - Multiples Myelom Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108275 ER -