TY - JOUR A1 - Bae, Soyeon A1 - Heidrich, Lea A1 - Levick, Shaun R. A1 - Gossner, Martin M. A1 - Seibold, Sebastian A1 - Weisser, Wolfgang W. A1 - Magdon, Paul A1 - Serebryanyk, Alla A1 - Bässler, Claus A1 - Schäfer, Deborah A1 - Schulze, Ernst-Detlef A1 - Doerfler, Inken A1 - Müller, Jörg A1 - Jung, Kirsten A1 - Heurich, Marco A1 - Fischer, Markus A1 - Roth, Nicolas A1 - Schall, Peter A1 - Boch, Steffen A1 - Wöllauer, Stephan A1 - Renner, Swen C. A1 - Müller, Jörg T1 - Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi-taxa and multi-scale approach JF - Diversity and Distribution N2 - Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turnover of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the environmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size. Location: Temperate forests in five regions across Germany. Methods: In the inter-region analysis, the independent and shared effects of the regional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined. Results: In the inter-region analysis, over half of the explained variation in community composition (23% of the total explained 35%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less dispersive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physiognomy, but the relative importance of the latter increased with increasing trophic position and body size. Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conservation frameworks targeting biodiversity of multiple groups should cover both environmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy. KW - body size KW - dispersal ability KW - environmental filtering KW - forest physiognomy KW - neutral processes KW - plant composition KW - regional species pool KW - species turnover KW - trophic position KW - β-diversity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236117 VL - 27 IS - 3 ER - TY - JOUR A1 - Müller, Jörg A1 - Ulyshen, Mike A1 - Seibold, Sebastian A1 - Cadotte, Marc A1 - Chao, Anne A1 - Bässler, Claus A1 - Vogel, Sebastian A1 - Hagge, Jonas A1 - Weiß, Ingmar A1 - Baldrian, Petr A1 - Tláskal, Vojtěch A1 - Thorn, Simon T1 - Primary determinants of communities in deadwood vary among taxa but are regionally consistent JF - Oikos N2 - The evolutionary split between gymnosperms and angiosperms has far‐reaching implications for the current communities colonizing trees. The inherent characteristics of dead wood include its role as a spatially scattered habitat of plant tissue, transient in time. Thus, local assemblages in deadwood forming a food web in a necrobiome should be affected not only by dispersal ability but also by host tree identity, the decay stage and local abiotic conditions. However, experiments simultaneously manipulating these potential community drivers in deadwood are lacking. To disentangle the importance of spatial distance and microclimate, as well as host identity and decay stage as drivers of local assemblages, we conducted two consecutive experiments, a 2‐tree species and 6‐tree species experiment with 80 and 72 tree logs, respectively, located in canopy openings and under closed canopies of a montane and a lowland forest. We sampled saproxylic beetles, spiders, fungi and bacterial assemblages from logs. Variation partitioning for community metrics based on a unified framework of Hill numbers showed consistent results for both studies: host identity was most important for sporocarp‐detected fungal assemblages, decay stage and host tree for DNA‐detected fungal assemblages, microclimate and decay stage for beetles and spiders and decay stage for bacteria. Spatial distance was of minor importance for most taxa but showed the strongest effects for arthropods. The contrasting patterns among the taxa highlight the need for multi‐taxon analyses in identifying the importance of abiotic and biotic drivers of community composition. Moreover, the consistent finding of microclimate as the primary driver for saproxylic beetles compared to host identity shows, for the first time that existing evolutionary host adaptions can be outcompeted by local climate conditions in deadwood. KW - deadwood experiments KW - dispersal KW - forest management KW - habitat filter KW - wood-inhabiting fungi Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228201 VL - 129 IS - 10 SP - 1579 EP - 1588 ER - TY - JOUR A1 - Doerfler, Inken A1 - Cadotte, Marc W. A1 - Weisser, Wolfgang W. A1 - Müller, Jörg A1 - Gossner, Martin M. A1 - Heibl, Christoph A1 - Bässler, Claus A1 - Thorn, Simon A1 - Seibold, Sebastian T1 - Restoration‐oriented forest management affects community assembly patterns of deadwood‐dependent organisms JF - Journal of Applied Ecology N2 - Land‐use intensification leads to loss and degradation of habitats and is thus a major driver of biodiversity loss. Restoration strategies typically focus on promoting biodiversity but often neglect that land‐use intensification could have changed the underlying mechanisms of community assembly. Since assembly mechanisms determine the diversity and composition of communities, we propose that evaluation of restoration strategies should consider effects of restoration on biodiversity and community assembly. Using a multi‐taxon approach, we tested whether a strategy that promotes forest biodiversity by restoring deadwood habitats also affects assembly patterns. We assessed saproxylic (i.e. deadwood‐dependent) beetles and fungi, as well as non‐saproxylic plants and birds in 68 beech forest plots in southern Germany, 8 years after the commencement of a restoration project. To assess changes in community assembly, we analysed the patterns of functional–phylogenetic diversity, community‐weighted mean (CWM) traits and their diversity. We hypothesized that restoration increases habitat amount and heterogeneity of deadwood and reduces canopy cover and thereby decreases the strength of environmental filters imposed by past silvicultural intensification, such as a low amount in deadwood. With the restoration of deadwood habitats, saproxylic beetle communities became less functionally–phylogenetically similar, whereas the assembly patterns of saproxylic fungi and non‐saproxylic taxa remained unaffected by deadwood restoration. Among the traits analysed, deadwood diameter niche position of species was most strongly affected indicating that the enrichment of large deadwood objects led to lower functional–phylogenetical similarity of saproxylic beetles. Community assembly and traits of plants were mainly influenced by microclimate associated with changes in canopy cover. Synthesis and applications. Our results indicate that the positive effects of deadwood restoration on saproxylic beetle richness are associated with an increase in deadwood amount. This might be linked to an increase in deadwood heterogeneity, and therefore decreasing management‐induced environmental filters. Deadwood enrichment can thus be considered an effective restoration strategy which reduces the negative effects of intense forest management on saproxylic taxa by not only promoting biodiversity but also by decreasing the environmental filters shaping saproxylic beetle communities, thus allowing the possibly for more interactions between species and a higher functional diversity. KW - assembly mechanisms KW - beech forest KW - community‐weighted mean KW - deadwood enrichment KW - habitat heterogeneity KW - restoration strategy KW - saproxylic species KW - species traits Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217918 VL - 57 IS - 12 SP - 2429 EP - 2440 ER - TY - JOUR A1 - Thorn, Simon A1 - Seibold, Sebastian A1 - Leverkus, Alexandro B A1 - Michler, Thomas A1 - Müller, Jörg A1 - Noss, Reed F A1 - Stork, Nigel A1 - Vogel, Sebastian A1 - Lindenmayer, David B T1 - The living dead: acknowledging life after tree death to stop forest degradation JF - Frontiers in Ecology and the Environment N2 - Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures. KW - forest degradation KW - biodiversity KW - deadwood Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218575 VL - 18 IS - 9 SP - 505 EP - 512 ER -