TY - JOUR A1 - Richter, Anne A1 - Wegener, Sonja A1 - Breuer, Kathrin A1 - Razinskas, Gary A1 - Weick, Stefan A1 - Exner, Florian A1 - Bratengeier, Klaus A1 - Flentje, Michael A1 - Sauer, Otto A1 - Polat, Bülent T1 - Comparison of sliding window and field-in-field techniques for tangential whole breast irradiation using the Halcyon and Synergy Agility systems JF - Radiation Oncology N2 - Background To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. Methods For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. Results The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. Conclusions For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system. KW - whole breast irradiation KW - Halcyon KW - IGRT KW - dose to OARs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265704 VL - 16 ER - TY - JOUR A1 - Radeloff, Katrin A1 - Ramos Tirado, Mario A1 - Haddad, Daniel A1 - Breuer, Kathrin A1 - Müller, Jana A1 - Hochmuth, Sabine A1 - Hackenberg, Stephan A1 - Scherzad, Agmal A1 - Kleinsasser, Norbert A1 - Radeloff, Andreas T1 - Superparamagnetic iron oxide particles (VSOPs) show genotoxic effects but no functional impact on human adipose tissue-derived stromal cells (ASCs) JF - Materials N2 - Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs). Cytotoxic as well as genotoxic effects of the labeling procedure were measured in labeled and unlabeled hASCs using the MTT assay, comet assay and chromosomal aberration test. Trilineage differentiation was performed to evaluate an impairment of the differentiation potential due to the particles. Proliferation as well as migration capability were analyzed after the labeling procedure. Furthermore, the labeling of the hASCs was confirmed by Prussian blue staining, transmission electron microscopy (TEM) and high-resolution MRI. Below the concentration of 0.6 mM, which was used for the procedure, no evidence of genotoxic effects was found. At 0.6 mM, 1 mM as well as 1.5 mM, an increase in the number of chromosomal aberrations was determined. Cytotoxic effects were not observed at any concentration. Proliferation, migration capability and differentiation potential were also not affected by the procedure. Labeling with VSOPs is a useful labeling method for hASCs that does not affect their proliferation, migration and differentiation potential. Despite the absence of cytotoxicity, however, indications of genotoxic effects have been demonstrated. KW - ASCs KW - adipose tissue-derived stromal cells KW - VSOP KW - iron oxide nanoparticles KW - toxicity KW - MRI KW - cell labeling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222970 SN - 1996-1944 VL - 14 IS - 2 ER -