TY - JOUR A1 - Tran-Gia, Johannes A1 - Denis-Bacelar, Ana M. A1 - Ferreira, Kelley M. A1 - Robinson, Andrew P. A1 - Calvert, Nicholas A1 - Fenwick, Andrew J. A1 - Finocchiaro, Domenico A1 - Fioroni, Federica A1 - Grassi, Elisa A1 - Heetun, Warda A1 - Jewitt, Stephanie J. A1 - Kotzassarlidou, Maria A1 - Ljungberg, Michael A1 - McGowan, Daniel R. A1 - Scott, Nathaniel A1 - Scuffham, James A1 - Gleisner, Katarina Sjögreen A1 - Tipping, Jill A1 - Wevrett, Jill A1 - Lassmann, Michael T1 - A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project JF - EJNMMI Physics N2 - Purpose Patient-specific dosimetry is required to ensure the safety of molecular radiotherapy and to predict response. Dosimetry involves several steps, the first of which is the determination of the activity of the radiopharmaceutical taken up by an organ/lesion over time. As uncertainties propagate along each of the subsequent steps (integration of the time–activity curve, absorbed dose calculation), establishing a reliable activity quantification is essential. The MRTDosimetry project was a European initiative to bring together expertise in metrology and nuclear medicine research, with one main goal of standardizing quantitative \(^{177}\)Lu SPECT/CT imaging based on a calibration protocol developed and tested in a multicentre inter-comparison. This study presents the setup and results of this comparison exercise. Methods The inter-comparison included nine SPECT/CT systems. Each site performed a set of three measurements with the same setup (system, acquisition and reconstruction): (1) Determination of an image calibration for conversion from counts to activity concentration (large cylinder phantom), (2) determination of recovery coefficients for partial volume correction (IEC NEMA PET body phantom with sphere inserts), (3) validation of the established quantitative imaging setup using a 3D printed two-organ phantom (ICRP110-based kidney and spleen). In contrast to previous efforts, traceability of the activity measurement was required for each participant, and all participants were asked to calculate uncertainties for their SPECT-based activities. Results Similar combinations of imaging system and reconstruction lead to similar image calibration factors. The activity ratio results of the anthropomorphic phantom validation demonstrate significant harmonization of quantitative imaging performance between the sites with all sites falling within one standard deviation of the mean values for all inserts. Activity recovery was underestimated for total kidney, spleen, and kidney cortex, while it was overestimated for the medulla. Conclusion This international comparison exercise demonstrates that harmonization of quantitative SPECT/CT is feasible when following very specific instructions of a dedicated calibration protocol, as developed within the MRTDosimetry project. While quantitative imaging performance demonstrates significant harmonization, an over- and underestimation of the activity recovery highlights the limitations of any partial volume correction in the presence of spill-in and spill-out between two adjacent volumes of interests. KW - quantitative SPECT/CT KW - 177Lu SPECT/CT imaging KW - standardization of SPECT/CT imaging KW - harmonization of SPECT/CT imaging KW - international multicenter comparison exercise KW - traceability of SPECT/CT imaging KW - molecular radiotherapy (MRT) KW - 3D printing KW - phantom Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270380 VL - 8 ER - TY - JOUR A1 - Konijnenberg, Mark A1 - Herrmann, Ken A1 - Kobe, Carsten A1 - Verburg, Frederik A1 - Hindorf, Cecilia A1 - Hustinx, Roland A1 - Lassmann, Michael T1 - EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - The EC Directive 2013/59/Euratom states in article 56 that exposures of target volumes in nuclear medicine treatments shall be individually planned and their delivery appropriately verified. The Directive also mentions that medical physics experts should always be appropriately involved in those treatments. Although it is obvious that, in nuclear medicine practice, every nuclear medicine physician and physicist should follow national rules and legislation, the EANM considered it necessary to provide guidance on how to interpret the Directive statements for nuclear medicine treatments. For this purpose, the EANM proposes to distinguish three levels in compliance to the optimization principle in the directive, inspired by the indication of levels in prescribing, recording and reporting of absorbed doses after radiotherapy defined by the International Commission on Radiation Units and Measurements (ICRU): Most nuclear medicine treatments currently applied in Europe are standardized. The minimum requirement for those treatments is ICRU level 1 (“activity-based prescription and patient-averaged dosimetry”), which is defined by administering the activity within 10% of the intended activity, typically according to the package insert or to the respective EANM guidelines, followed by verification of the therapy delivery, if applicable. Non-standardized treatments are essentially those in developmental phase or approved radiopharmaceuticals being used off-label with significantly (> 25% more than in the label) higher activities. These treatments should comply with ICRU level 2 (“activity-based prescription and patient-specific dosimetry”), which implies recording and reporting of the absorbed dose to organs at risk and optionally the absorbed dose to treatment regions. The EANM strongly encourages to foster research that eventually leads to treatment planning according to ICRU level 3 (“dosimetry-guided patient-specific prescription and verification”), whenever possible and relevant. Evidence for superiority of therapy prescription on basis of patient-specific dosimetry has not been obtained. However, the authors believe that a better understanding of therapy dosimetry, i.e. how much and where the energy is delivered, and radiobiology, i.e. radiation-related processes in tissues, are keys to the long-term improvement of our treatments. KW - nuclear medicine therapy KW - dosimetry KW - optimization KW - BSS directive Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235280 SN - 1619-7070 VL - 48 ER - TY - JOUR A1 - Aerts, An A1 - Eberlein, Uta A1 - Holm, Sören A1 - Hustinx, Roland A1 - Konijnenberg, Mark A1 - Strigari, Lidia A1 - van Leeuwen, Fijs W. B. A1 - Glatting, Gerhard A1 - Lassmann, Michael T1 - EANM position paper on the role of radiobiology in nuclear medicine JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine. KW - radionuclide therapy KW - radiobiology KW - dosimetry KW - biodosimetry KW - biomarkers Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265595 VL - 48 IS - 11 ER -