TY - JOUR A1 - Aido, Ahmed A1 - Zaitseva, Olena A1 - Wajant, Harald A1 - Buzgo, Matej A1 - Simaite, Aiva T1 - Anti-Fn14 antibody-conjugated nanoparticles display membrane TWEAK-like agonism JF - Pharmaceutics N2 - Conventional bivalent IgG antibodies targeting a subgroup of receptors of the TNF superfamily (TNFSF) including fibroblast growth factor-inducible 14 (anti-Fn14) typically display no or only very limited agonistic activity on their own and can only trigger receptor signaling by crosslinking or when bound to Fcγ receptors (FcγR). Both result in proximity of multiple antibody-bound TNFRSF receptor (TNFR) molecules, which enables engagement of TNFR-associated signaling pathways. Here, we have linked anti-Fn14 antibodies to gold nanoparticles to mimic the “activating” effect of plasma membrane-presented FcγR-anchored anti-Fn14 antibodies. We functionalized gold nanoparticles with poly-ethylene glycol (PEG) linkers and then coupled antibodies to the PEG surface of the nanoparticles. We found that Fn14 binding of the anti-Fn14 antibodies PDL192 and 5B6 is preserved upon attachment to the nanoparticles. More importantly, the gold nanoparticle-presented anti-Fn14 antibody molecules displayed strong agonistic activity. Our results suggest that conjugation of monoclonal anti-TNFR antibodies to gold nanoparticles can be exploited to uncover their latent agonism, e.g., for immunotherapeutic applications. KW - Fn14 KW - nanoparticles KW - surface modification KW - drug-delivery KW - anti-TNFRSF receptor (TNFR) antibodies Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242710 SN - 1999-4923 VL - 13 IS - 7 ER - TY - JOUR A1 - Kucka, Kirstin A1 - Lang, Isabell A1 - Zhang, Tengyu A1 - Siegmund, Daniela A1 - Medler, Juliane A1 - Wajant, Harald T1 - Membrane lymphotoxin-α\(_2\)β is a novel tumor necrosis factor (TNF) receptor 2 (TNFR2) agonist JF - Cell Death & Disease N2 - In the early 1990s, it has been described that LTα and LTβ form LTα\(_2\)β and LTαβ\(_2\) heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ\(_2\)–LTβR system has been intensively studied while the LTα\(_2\)β–TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα\(_2\)β–TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα\(_2\)β interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα\(_2\)β (memLTα\(_2\)β), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα\(_2\)β is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα. KW - cytokines KW - signal transduction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260077 VL - 12 IS - 4 ER - TY - JOUR A1 - Weinelt, Nadine A1 - Karathanasis, Christos A1 - Smith, Sonja A1 - Medler, Juliane A1 - Malkusch, Sebastian A1 - Fulda, Simone A1 - Wajant, Harald A1 - Heilemann, Mike A1 - van Wijk, Sjoerd J. L. T1 - Quantitative single‐molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα‐induced NF‐ĸB signaling JF - Journal of Leukocyte Biology N2 - TNFR1 is a crucial regulator of NF‐ĸB‐mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα‐ and TNFR1‐controlled NF‐ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2‐mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single‐molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1‐mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand‐independent preligand assembly domain (PLAD)‐mediated TNFR1 dimerization as well as TNFα‐induced TNFR1 oligomerization. In addition, zafirlukast‐mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF‐ĸB signaling in reconstituted TNFR1‐mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD‐mediated, ligand‐independent TNFR1 dimerization for NF‐ĸB activation, highlight the PLAD as central regulator of TNFα‐induced TNFR1 oligomerization, and demonstrate that TNFR1‐mEos2 MEFs can be used to investigate TNFR1‐antagonizing compounds employing single‐molecule quantification and functional NF‐ĸB assays at physiologic conditions. KW - Single‐Molecule Localization Microscopy (SMLM) KW - Pre‐Ligand Assembly Domain (PLAD) KW - Cysteine‐Rich Domain (CRD) KW - CysLTR1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215960 VL - 109 IS - 2 SP - 363 EP - 371 ER - TY - JOUR A1 - Kucka, Kirstin A1 - Wajant, Harald T1 - Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Receptor Superfamily JF - Frontiers in Cell and Developmental Biology N2 - With the exception of a few signaling incompetent decoy receptors, the receptors of the tumor necrosis factor receptor superfamily (TNFRSF) are signaling competent and engage in signaling pathways resulting in inflammation, proliferation, differentiation, and cell migration and also in cell death induction. TNFRSF receptors (TNFRs) become activated by ligands of the TNF superfamily (TNFSF). TNFSF ligands (TNFLs) occur as trimeric type II transmembrane proteins but often also as soluble ligand trimers released from the membrane-bound form by proteolysis. The signaling competent TNFRs are efficiently activated by the membrane-bound TNFLs. The latter recruit three TNFR molecules, but there is growing evidence that this is not sufficient to trigger all aspects of TNFR signaling; rather, the formed trimeric TNFL–TNFR complexes have to cluster secondarily in the cell-to-cell contact zone for full TNFR activation. With respect to their response to soluble ligand trimers, the signaling competent TNFRs can be subdivided into two groups. TNFRs of one group, designated as category I TNFRs, are robustly activated by soluble ligand trimers. The receptors of a second group (category II TNFRs), however, failed to become properly activated by soluble ligand trimers despite high affinity binding. The limited responsiveness of category II TNFRs to soluble TNFLs can be overcome by physical linkage of two or more soluble ligand trimers or, alternatively, by anchoring the soluble ligand molecules to the cell surface or extracellular matrix. This suggests that category II TNFRs have a limited ability to promote clustering of trimeric TNFL–TNFR complexes outside the context of cell–cell contacts. In this review, we will focus on three aspects on the relevance of receptor oligomerization for TNFR signaling: (i) the structural factors which promote clustering of free and liganded TNFRs, (ii) the signaling pathway specificity of the receptor oligomerization requirement, and (iii) the consequences for the design and development of TNFR agonists. KW - TNF receptor (TNFR) family KW - TNF ligand superfamily KW - NFκB KW - cell death KW - receptor cluster Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227180 SN - 2296-634X VL - 8 ER -