TY - JOUR A1 - Waider, Jonas A1 - Popp, Sandy A1 - Mlinar, Boris A1 - Montalbano, Alberto A1 - Bonfiglio, Francesco A1 - Aboagye, Benjamin A1 - Thuy, Elisabeth A1 - Kern, Raphael A1 - Thiel, Christopher A1 - Araragi, Naozumi A1 - Svirin, Evgeniy A1 - Schmitt-Böhrer, Angelika G. A1 - Corradetti, Renato A1 - Lowry, Christopher A. A1 - Lesch, Klaus-Peter T1 - Serotonin deficiency increases context-dependent fear learning through modulation of hippocampal activity JF - Frontiers in Neuroscience N2 - Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses. KW - tryptophan hydroxylase 2 KW - knockout KW - fear learning KW - extinction KW - long-term potentiation KW - hippocampus KW - immediate-early gene KW - serotonin deficiency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196077 SN - 1662-453X VL - 13 IS - 245 ER - TY - JOUR A1 - Grünewald, Benedikt A1 - Lange, Maren D A1 - Werner, Christian A1 - O'Leary, Aet A1 - Weishaupt, Andreas A1 - Popp, Sandy A1 - Pearce, David A A1 - Wiendl, Heinz A1 - Reif, Andreas A1 - Pape, Hans C A1 - Toyka, Klaus V A1 - Sommer, Claudia A1 - Geis, Christian T1 - Defective synaptic transmission causes disease signs in a mouse model of juvenile neuronal ceroid lipofuscinosis JF - eLife N2 - Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease) caused by mutations in the CLN3 gene is the most prevalent inherited neurodegenerative disease in childhood resulting in widespread central nervous system dysfunction and premature death. The consequences of CLN3 mutation on the progression of the disease, on neuronal transmission, and on central nervous network dysfunction are poorly understood. We used Cln3 knockout (Cln3\(^{Δex1-6}\)) mice and found increased anxiety-related behavior and impaired aversive learning as well as markedly affected motor function including disordered coordination. Patch-clamp and loose-patch recordings revealed severely affected inhibitory and excitatory synaptic transmission in the amygdala, hippocampus, and cerebellar networks. Changes in presynaptic release properties may result from dysfunction of CLN3 protein. Furthermore, loss of calbindin, neuropeptide Y, parvalbumin, and GAD65-positive interneurons in central networks collectively support the hypothesis that degeneration of GABAergic interneurons may be the cause of supraspinal GABAergic disinhibition. KW - CLN3 KW - mutation KW - mouse model KW - synaptic transmission KW - amygdala KW - hippocampus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170004 VL - 6 IS - e28685 ER - TY - JOUR A1 - Karabeg, Margherita M. A1 - Grauthoff, Sandra A1 - Kollert, Sina Y. A1 - Weidner, Magdalena A1 - Heiming, Rebecca S. A1 - Jansen, Friederike A1 - Popp, Sandy A1 - Kaiser, Sylvia A1 - Lesch, Klaus-Peter A1 - Sachser, Norbert A1 - Schmitt, Angelika G. A1 - Lewejohann, Lars T1 - 5-HTT Deficiency Affects Neuroplasticity and Increases Stress Sensitivity Resulting in Altered Spatial Learning Performance in the Morris Water Maze but Not in the Barnes Maze JF - PLoS ONE N2 - The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM. KW - immediate early genes KW - learning curves KW - animal performance KW - animal behavior KW - serotonin KW - learning KW - mice KW - hippocampus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129978 VL - 8 IS - 10 ER -