TY - JOUR A1 - Kramer, Susanne A1 - Piper, Sophie A1 - Estevez, Antonio A1 - Carrington, Mark T1 - Polycistronic trypanosome mRNAs are a target for the exosome JF - Molecular and Biochemical Parasitology N2 - Eukaryotic cells have several mRNA quality control checkpoints to avoid the production of aberrant proteins. Intron-containing mRNAs are actively degraded by the nuclear exosome, prevented from nuclear exit and, if these systems fail, degraded by the cytoplasmic NMD machinery. Trypanosomes have only two introns. However, they process mRNA5 from long polycistronic precursors by trans-splicing and polycistronic mRNA molecules frequently arise from any missed splice site. Here, we show that RNAi depletion of the trypanosome exosome, but not of the cytoplasmic 5'-3' exoribonuclease XRNA or the NMD helicase UPF1, causes accumulation of oligocistronic mRNA5. We have also revisited the localization of the trypanosome exosome by expressing eYFP-fusion proteins of the exosome subunits RRP44 and RRP6. Both proteins are significantly enriched in the nucleus. Together with published data, our data suggest a major nuclear function of the trypanosome exosome in rRNA, snoRNA and mRNA quality control. KW - Trypanosoma brucei KW - Exosome KW - NMD KW - Polycistronic mRNA KW - trans-splicing KW - Trypanosomes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191350 VL - 205 IS - 1-2 ER - TY - JOUR A1 - Fritz, Melanie A1 - Vanselow, Jens A1 - Sauer, Nadja A1 - Lamer, Stephanie A1 - Goos, Carina A1 - Siegel, T. Nicolai A1 - Subota, Ines A1 - Schlosser, Andreas A1 - Carrington, Mark A1 - Kramer, Susanne T1 - Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve JF - Nucleic Acids Research N2 - RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126180 ER - TY - JOUR A1 - Schwede, Angela A1 - Jones, Nicola A1 - Engstler, Markus A1 - Carrington, Mark T1 - The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes JF - Molecular & Biochemical Parasitology N2 - In the mammalian host, the Trypanosoma brucei cell surface is covered with a densely packed protein coat of a single protein, the variant surface glycoprotein (VSG). The VSG is believed to shield invariant surface proteins from host antibodies but there is limited information on how far antibodies can penetrate into the VSG monolayer. Here, the VSG surface coat was probed to determine whether it acts as a barrier to binding of antibodies to the membrane proximal VSG C-terminal domain. The binding of C-terminal domain antibodies to VSG221 or VSG118 was compared with antibodies recognising the cognate whole VSGs. The C-terminal VSG domain was inaccessible to antibodies on live cells but not on fixed cells. This provides further evidence that the VSG coat acts as a barrier and protects the cell from antibodies that would otherwise bind to some of the other externally disposed proteins. KW - Trypanosome KW - VSG KW - Trypanosoma brucei KW - Cell surface KW - Antibody Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142746 VL - 175 IS - 2 ER -