TY - JOUR A1 - Hauptstein, Julia A1 - Forster, Leonard A1 - Nadernezhad, Ali A1 - Horder, Hannes A1 - Stahlhut, Philipp A1 - Groll, Jürgen A1 - Blunk, Torsten A1 - Teßmar, Jörg T1 - Bioink Platform Utilizing Dual-Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells JF - Macromolecular Bioscience N2 - 3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell-hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual-stage crosslinking approach based on thiolated hyaluronic acid (HA-SH), which not only provides stand-alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA-SH with different molecular weights is synthesized and crosslinked with acrylated (PEG-diacryl) and allylated (PEG-diallyl) polyethylene glycol in a two-step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV-mediated thiol–ene reaction to stabilize the printed bioink for long-term cell culture. Bioinks with high molecular weight HA-SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long-term cultured constructs. The dual-stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks. KW - hyaluronic acid KW - biofabrication KW - chondrogenic differentiation KW - dual-stage crosslinking KW - extracellular matrix Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257556 VL - 22 IS - 2 ER - TY - JOUR A1 - Hauptstein, Julia A1 - Forster, Leonard A1 - Nadernezhad, Ali A1 - Groll, Jürgen A1 - Teßmar, Jörg A1 - Blunk, Torsten T1 - Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues JF - International Journal of Molecular Sciences N2 - In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications. KW - biofabrication KW - bioink KW - chondrogenic differentiation KW - dual-stage crosslinking KW - hyaluronic acid KW - tethering KW - transforming growth factor-beta 1 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284239 SN - 1422-0067 VL - 23 IS - 2 ER - TY - JOUR A1 - Ryma, Matthias A1 - Genç, Hatice A1 - Nadernezhad, Ali A1 - Paulus, Ilona A1 - Schneidereit, Dominik A1 - Friedrich, Oliver A1 - Andelovic, Kristina A1 - Lyer, Stefan A1 - Alexiou, Christoph A1 - Cicha, Iwona A1 - Groll, Jürgen T1 - A Print-and-Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels JF - Advanced Materials N2 - A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days. KW - hydrogels KW - microvasculature KW - melt electrowriting Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318532 VL - 34 IS - 28 ER - TY - JOUR A1 - Weigl, Franziska A1 - Blum, Carina A1 - Sancho, Ana A1 - Groll, Jürgen T1 - Correlative Analysis of Intra– Versus Extracellular Cell Detachment Events via the Alignment of Optical Imaging and Detachment Force Quantification JF - Advanced Materials Technologies N2 - In recent decades, hybrid characterization systems have become pillars in the study of cellular biomechanics. Especially, Atomic Force Microscopy (AFM) is combined with a variety of optical microscopy techniques to discover new aspects of cell adhesion. AFM, however, is limited to the early-stage of cell adhesion, so that the forces of mature cell contacts cannot be addressed. Even though the invention of Fluidic Force Microscopy (FluidFM) overcomes these limitations by combining the precise force-control of AFM with microfluidics, the correlative investigation of detachment forces arising from spread mammalian cells has been barely achieved. Here, a novel multifunctional device integrating Fluorescence Microscopy (FL) into FluidFM technology (FL-FluidFM) is introduced, enabling real-time optical tracking of entire cell detachment processes in parallel to the undisturbed acquisition of force-distance curves. This setup, thus, allows for entailing two pieces of information at once. As proof-of-principle experiment, this method is applied to fluorescently labeled rat embryonic fibroblast (REF52) cells, demonstrating a precise matching between identified force-jumps and visualized cellular unbinding steps. This study, thus, presents a novel characterization tool for the correlated evaluation of mature cell adhesion, which has great relevance, for instance, in the development of biomaterials or the fight against diseases such as cancer. KW - Fluorescence Microscopy KW - FluidFM technology KW - detachment force quantification Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318544 SN - 2365-709X VL - 7 IS - 11 ER - TY - JOUR A1 - Pereira, Ana Rita A1 - Trivanović, Drenka A1 - Stahlhut, Philipp A1 - Rudert, Maximilian A1 - Groll, Jürgen A1 - Herrmann, Marietta T1 - Preservation of the naïve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix JF - Journal of Tissue Engineering N2 - The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their naïve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the naïve features of BM-MSC. KW - decellularization KW - bone model KW - stem cell niche KW - stemness KW - osteogenesis KW - 3D models Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268835 VL - 13 ER - TY - JOUR A1 - Brand, Jessica S. A1 - Forster, Leonard A1 - Böck, Thomas A1 - Stahlhut, Philipp A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Albrecht, Krystyna T1 - Covalently Cross-Linked Pig Gastric Mucin Hydrogels Prepared by Radical-Based Chain-Growth and Thiol-ene Mechanisms JF - Macromolecular Bioscience N2 - Mucin, a high molecular mass hydrophilic glycoprotein, is the main component of mucus that coats every wet epithelium in animals. It is thus intrinsically biocompatible, and with its protein backbone and the o-glycosidic bound oligosaccharides, it contains a plethora of functional groups which can be used for further chemical modifications. Here, chain-growth and step-growth (thiol-ene) free-radical cross-linked hydrogels prepared from commercially available pig gastric mucin (PGM) are introduced and compared as cost-efficient and easily accessible alternative to the more broadly applied bovine submaxillary gland mucin. For this, PGM is functionalized with photoreactive acrylate groups or allyl ether moieties, respectively. Whereas homopolymerization of acrylate-functionalized polymers is performed, for thiol-ene cross-linking, the allyl-ether-functionalized PGM is cross-linked with thiol-functionalized hyaluronic acid. Morphology, mechanical properties, and cell compatibility of both kinds of PGM hydrogels are characterized and compared. Furthermore, the biocompatibility of these hydrogels can be evaluated in cell culture experiments. KW - click chemistry KW - photopolymerization KW - hydrogels KW - mucin KW - thiol-ene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318453 VL - 22 IS - 4 ER - TY - JOUR A1 - Shan, Junwen A1 - Böck, Thomas A1 - Keller, Thorsten A1 - Forster, Leonard A1 - Blunk, Torsten A1 - Groll, Jürgen A1 - Teßmar, Jörg T1 - TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid JF - Molecules N2 - Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer’s backbone. An alternative modification of the vicinal diol of the glucuronic acid is oxidation with sodium periodate to generate dialdehydes via a ring opening mechanism that can subsequently be further modified or crosslinked via Schiff base chemistry. Since this oxidation causes a structural destruction of the polysaccharide backbone, it was our intention to study a novel synthesis protocol frequently applied to selectively oxidize the C6 hydroxyl group of saccharides. On the basis of this TEMPO/TCC oxidation, we studied an alternative hydrogel platform based on oxidized HA crosslinked using adipic acid dihydrazide as the crosslinker. KW - hyaluronic acid KW - oxidation KW - hydrogel formation KW - Schiff base chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248362 SN - 1420-3049 VL - 26 IS - 19 ER - TY - JOUR A1 - Horder, Hannes A1 - Guaza Lasheras, Mar A1 - Grummel, Nadine A1 - Nadernezhad, Ali A1 - Herbig, Johannes A1 - Ergün, Süleyman A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Fabry, Ben A1 - Bauer-Kreisel, Petra A1 - Blunk, Torsten T1 - Bioprinting and differentiation of adipose-derived stromal cell spheroids for a 3D breast cancer-adipose tissue model JF - Cells N2 - Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell–cell and cell–matrix interplay within the tumor-stroma microenvironment KW - adipose-derived stromal cells KW - adipose tissue KW - bioprinting KW - breast cancer model KW - extracellular matrix KW - hyaluronic acid KW - spheroids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236496 VL - 10 IS - 4 ER - TY - JOUR A1 - Doryab, Ali A1 - Taskin, Mehmet Berat A1 - Stahlhut, Philipp A1 - Schröppel, Andreas A1 - Orak, Sezer A1 - Voss, Carola A1 - Ahluwalia, Arti A1 - Rehberg, Markus A1 - Hilgendorff, Anne A1 - Stöger, Tobias A1 - Groll, Jürgen A1 - Schmid, Otmar T1 - A Bioinspired in vitro Lung Model to Study Particokinetics of Nano-/Microparticles Under Cyclic Stretch and Air-Liquid Interface Conditions JF - Frontiers in Bioengineering and Biotechnology N2 - Evolution has endowed the lung with exceptional design providing a large surface area for gas exchange area (ca. 100 m\(^{2}\)) in a relatively small tissue volume (ca. 6 L). This is possible due to a complex tissue architecture that has resulted in one of the most challenging organs to be recreated in the lab. The need for realistic and robust in vitro lung models becomes even more evident as causal therapies, especially for chronic respiratory diseases, are lacking. Here, we describe the Cyclic In VItro Cell-stretch (CIVIC) “breathing” lung bioreactor for pulmonary epithelial cells at the air-liquid interface (ALI) experiencing cyclic stretch while monitoring stretch-related parameters (amplitude, frequency, and membrane elastic modulus) under real-time conditions. The previously described biomimetic copolymeric BETA membrane (5 μm thick, bioactive, porous, and elastic) was attempted to be improved for even more biomimetic permeability, elasticity (elastic modulus and stretchability), and bioactivity by changing its chemical composition. This biphasic membrane supports both the initial formation of a tight monolayer of pulmonary epithelial cells (A549 and 16HBE14o\(^{-}\)) under submerged conditions and the subsequent cell-stretch experiments at the ALI without preconditioning of the membrane. The newly manufactured versions of the BETA membrane did not improve the characteristics of the previously determined optimum BETA membrane (9.35% PCL and 6.34% gelatin [w/v solvent]). Hence, the optimum BETA membrane was used to investigate quantitatively the role of physiologic cyclic mechanical stretch (10% linear stretch; 0.33 Hz: light exercise conditions) on size-dependent cellular uptake and transepithelial transport of nanoparticles (100 nm) and microparticles (1,000 nm) for alveolar epithelial cells (A549) under ALI conditions. Our results show that physiologic stretch enhances cellular uptake of 100 nm nanoparticles across the epithelial cell barrier, but the barrier becomes permeable for both nano- and micron-sized particles (100 and 1,000 nm). This suggests that currently used static in vitro assays may underestimate cellular uptake and transbarrier transport of nanoparticles in the lung. KW - lung cell model KW - cyclic stretch KW - ALI culture KW - bioinspired membrane KW - particle study Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223830 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Seifert, Annika A1 - Groll, Jürgen A1 - Weichhold, Jan A1 - Boehm, Anne V. A1 - Müller, Frank A. A1 - Gbureck, Uwe T1 - Phase Conversion of Ice‐Templated α‐Tricalcium Phosphate Scaffolds into Low‐Temperature Calcium Phosphates with Anisotropic Open Porosity JF - Advanced Engineering Materials N2 - The current study aims to extend the material platform for anisotropically structured calcium phosphates to low-temperature phases such as calcium-deficient hydroxyapatite (CDHA) or the secondary phosphates monetite and brushite. This is achieved by the phase conversion of highly porous α-tricalcium phosphate (α-TCP) scaffolds fabricated by ice-templating into the aforementioned phases by hydrothermal treatment or incubation in phosphoric acid. Prior to these steps, α-TCP scaffolds are either sintered for 8 h at 1400 °C or remain in their original state. Both nonsintered and sintered α-TCP specimens are converted into CDHA by hydrothermal treatment, while a transformation into monetite and brushite is achieved by incubation in phosphoric acid. Hydrothermal treatment for 72 h at 175 °C increases the porosity in nonsintered samples from 85% to 88% and from 75% to 88% in the sintered ones. An increase in the specific surface area from (1.102 ± 0.005) to (9.17 ± 0.01) m2 g−1 and from (0.190 ± 0.004) to (2.809 ± 0.002) m2 g−1 due to the phase conversion is visible for both the nonsintered and sintered samples. Compressive strength of the nonsintered samples increases significantly from (0.76 ± 0.11) to (5.29 ± 0.94) MPa due to incubation in phosphoric acid. KW - phase conversion KW - α-tricalcium phosphate Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256311 VL - 23 IS - 5 ER - TY - JOUR A1 - Holzmeister, Ib A1 - Weichhold, Jan A1 - Groll, Jürgen A1 - Zreiqat,, Hala A1 - Gbureck, Uwe T1 - Hydraulic reactivity and cement formation of baghdadite JF - Journal of the American Ceramic Society N2 - In this study, the hydraulic reactivity and cement formation of baghdadite (Ca\(_{3}\)ZrSi\(_{2}\)O\(_{9}\)) was investigated. The material was synthesized by sintering a mixture of CaCO\(_{3}\), SiO\(_{2}\), and ZrO\(_{2}\) and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3. KW - baghdadite KW - bone cement KW - hydraulic reactivity KW - mechanical activation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259457 VL - 104 IS - 7 ER - TY - JOUR A1 - Götz, Lisa-Marie A1 - Holeczek, Katharina A1 - Groll, Jürgen A1 - Jüngst, Tomasz A1 - Gbureck, Uwe T1 - Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants JF - Materials N2 - This study aimed to develop printable calcium magnesium phosphate pastes that harden by immersion in ammonium phosphate solution post-printing. Besides the main mineral compound, biocompatible ceramic, magnesium oxide and hydroxypropylmethylcellulose (HPMC) were the crucial components. Two pastes with different powder to liquid ratios of 1.35 g/mL and 1.93 g/mL were characterized regarding their rheological properties. Here, ageing over the course of 24 h showed an increase in viscosity and extrusion force, which was attributed to structural changes in HPMC as well as the formation of magnesium hydroxide by hydration of MgO. The pastes enabled printing of porous scaffolds with good dimensional stability and enabled a setting reaction to struvite when immersed in ammonium phosphate solution. Mechanical performance under compression was approx. 8–20 MPa as a monolithic structure and 1.6–3.0 MPa for printed macroporous scaffolds, depending on parameters such as powder to liquid ratio, ageing time, strand thickness and distance. KW - magnesium phosphate cement KW - extrusion-based 3D printing KW - degradable implant Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246110 SN - 1996-1944 VL - 14 IS - 18 ER - TY - JOUR A1 - Hu, Chen A1 - Hahn, Lukas A1 - Yang, Mengshi A1 - Altmann, Alexander A1 - Stahlhut, Philipp A1 - Groll, Jürgen A1 - Luxenhofer, Robert T1 - Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition JF - Journal of Materials Science N2 - As a promising biofabrication technology, extrusion-based bioprinting has gained significant attention in the last decade and major advances have been made in the development of bioinks. However, suitable synthetic and stimuli-responsive bioinks are underrepresented in this context. In this work, we described a hybrid system of nanoclay Laponite XLG and thermoresponsive block copolymer poly(2-methyl-2-oxazoline)-b-poly(2-n-propyl-2-oxazine) (PMeOx-b-PnPrOzi) as a novel biomaterial ink and discussed its critical properties relevant for extrusion-based bioprinting, including viscoelastic properties and printability. The hybrid hydrogel retains the thermogelling properties but is strengthened by the added clay (over 5 kPa of storage modulus and 240 Pa of yield stress). Importantly, the shear-thinning character is further enhanced, which, in combination with very rapid viscosity recovery (~ 1 s) and structure recovery (~ 10 s), is highly beneficial for extrusion-based 3D printing. Accordingly, various 3D patterns could be printed with markedly enhanced resolution and shape fidelity compared to the biomaterial ink without added clay. KW - printability KW - thermoresponsive hydrogel Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234894 SN - 0022-2461 VL - 56 ER - TY - JOUR A1 - Blum, Carina A1 - Taskin, Mehmet Berat A1 - Shan, Junwen A1 - Schilling, Tatjana A1 - Schlegelmilch, Katrin A1 - Teßmar, Jörg A1 - Groll, Jürgen T1 - Appreciating the First Line of the Human Innate Immune Defense: A Strategy to Model and Alleviate the Neutrophil Elastase-Mediated Attack toward Bioactivated Biomaterials JF - Small N2 - Biointerface engineering is a wide-spread strategy to improve the healing process and subsequent tissue integration of biomaterials. Especially the integration of specific peptides is one promising strategy to promote the regenerative capacity of implants and 3D scaffolds. In vivo, these tailored interfaces are, however, first confronted with the innate immune response. Neutrophils are cells with pronounced proteolytic potential and the first recruited immune cells at the implant site; nonetheless, they have so far been underappreciated in the design of biomaterial interfaces. Herein, an in vitro approach is introduced to model and analyze the neutrophil interaction with bioactivated materials at the example of nano-bioinspired electrospun surfaces that reveals the vulnerability of a given biointerface design to the contact with neutrophils. A sacrificial, transient hydrogel coating that demonstrates optimal protection for peptide-modified surfaces and thus alleviates the immediate cleavage by neutrophil elastase is further introduced. KW - solution electrospinning KW - human neutrophil elastase (HNE) KW - peptide immobilization KW - polymeric matrix Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257691 VL - 17 IS - 13 ER - TY - JOUR A1 - Haider, Malik Salman A1 - Ahmad, Taufiq A1 - Yang, Mengshi A1 - Hu, Chen A1 - Hahn, Lukas A1 - Stahlhut, Philipp A1 - Groll, Jürgen A1 - Luxenhofer, Robert T1 - Tuning the thermogelation and rheology of poly(2-oxazoline)/poly(2-oxazine)s based thermosensitive hydrogels for 3D bioprinting JF - Gels N2 - As one kind of “smart” material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications. KW - poly(2-ethyl-2-oxazoline) KW - shear thinning KW - shape fidelity KW - cyto-compatibility KW - bio-printability Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241781 SN - 2310-2861 VL - 7 IS - 3 ER - TY - JOUR A1 - Seifert, Annika A1 - Gruber, Julia A1 - Gbureck, Uwe A1 - Groll, Jürgen T1 - Morphological control of freeze‐structured scaffolds by selective temperature and material control in the ice‐templating process JF - Advanced Engineering Materials N2 - Herein, it is aimed to highlight the importance of the process parameter choice during directional solidification of polymer solutions, as they have a significant influence on the pore structure and orientation. Biopolymer solutions (alginate and chitosan) are directionally frozen, while systematically varying parameters such as the external temperature gradient, the temperature of the overall system, and the temperatures of the cooling surfaces. In addition, the effect of material properties such as molecular weight, solution concentration, or viscosity on the sample morphology is investigated. By selecting appropriate temperature gradients and cooling surface temperatures, aligned pores ranging in size between (50 ± 22) μm and (144 ± 56) μm are observed in the alginate samples, whereas the pore orientation is influenced by altering the external temperature gradient. As this gradient increases, the pores are increasingly oriented perpendicular to the sample surface. This is also observed in the chitosan samples. However, if the overall system is too cold, that is, using temperatures of the lower cooling surface down to −60 °C combined with low temperatures of the upper cooling surface, control over pore orientation is lost. This is also found when viscosity of chitosan solutions is above ≈5 Pas near the freezing point. KW - unidirectional freezing KW - anisotropic porous structures KW - morphology controls KW - systematic investigations Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256330 VL - 24 IS - 3 ER - TY - JOUR A1 - Dogan, Leyla A1 - Scheuring, Ruben A1 - Wagner, Nicole A1 - Ueda, Yuichiro A1 - Schmidt, Sven A1 - Wörsdörfer, Philipp A1 - Groll, Jürgen A1 - Ergün, Süleyman T1 - Human iPSC-derived mesodermal progenitor cells preserve their vasculogenesis potential after extrusion and form hierarchically organized blood vessels JF - Biofabrication N2 - Post-fabrication formation of a proper vasculature remains an unresolved challenge in bioprinting. Established strategies focus on the supply of the fabricated structure with nutrients and oxygen and either rely on the mere formation of a channel system using fugitive inks or additionally use mature endothelial cells and/or peri-endothelial cells such as smooth muscle cells for the formation of blood vessels in vitro. Functional vessels, however, exhibit a hierarchical organization and multilayered wall structure that is important for their function. Human induced pluripotent stem cell-derived mesodermal progenitor cells (hiMPCs) have been shown to possess the capacity to form blood vessels in vitro, but have so far not been assessed for their applicability in bioprinting processes. Here, we demonstrate that hiMPCs, after formulation into an alginate/collagen type I bioink and subsequent extrusion, retain their ability to give rise to the formation of complex vessels that display a hierarchical network in a process that mimics the embryonic steps of vessel formation during vasculogenesis. Histological evaluations at different time points of extrusion revealed the initial formation of spheres, followed by lumen formation and further structural maturation as evidenced by building a multilayered vessel wall and a vascular network. These findings are supported by immunostainings for endothelial and peri-endothelial cell markers as well as electron microscopic analyses at the ultrastructural level. Moreover, endothelial cells in capillary-like vessel structures deposited a basement membrane-like matrix at the basal side between the vessel wall and the alginate-collagen matrix. After transplantation of the printed constructs into the chicken chorioallantoic membrane (CAM) the printed vessels connected to the CAM blood vessels and get perfused in vivo. These results evidence the applicability and great potential of hiMPCs for the bioprinting of vascular structures mimicking the basic morphogenetic steps of de novo vessel formation during embryogenesis. KW - vascular biofabrication KW - human iPSC-derived mesodermal cells (hiMPCs) KW - extrusion of hiMPC-containing bioinks alginate + collagen type I KW - multilayered vessel wall with intimate, media and adventitia KW - vascular network and hierarchical organized vessels KW - electron microscopy KW - serial block face EM Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254046 VL - 13 IS - 4 ER - TY - JOUR A1 - Garitano-Trojaola, Andoni A1 - Sancho, Ana A1 - Götz, Ralph A1 - Eiring, Patrick A1 - Walz, Susanne A1 - Jetani, Hardikkumar A1 - Gil-Pulido, Jesus A1 - Da Via, Matteo Claudio A1 - Teufel, Eva A1 - Rhodes, Nadine A1 - Haertle, Larissa A1 - Arellano-Viera, Estibaliz A1 - Tibes, Raoul A1 - Rosenwald, Andreas A1 - Rasche, Leo A1 - Hudecek, Michael A1 - Sauer, Markus A1 - Groll, Jürgen A1 - Einsele, Hermann A1 - Kraus, Sabrina A1 - Kortüm, Martin K. T1 - Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia JF - Communications Biology N2 - The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML. KW - actin KW - acute myeloid leukaemia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260709 VL - 4 IS - 1 ER - TY - JOUR A1 - Haider, Malik Salman A1 - Ahmad, Taufiq A1 - Groll, Jürgen A1 - Scherf-Clavel, Oliver A1 - Kroiss, Matthias A1 - Luxenhofer, Robert T1 - The Challenging Pharmacokinetics of Mitotane: An Old Drug in Need of New Packaging JF - European Journal of Drug Metabolism and Pharmacokinetics N2 - Adrenocortical carcinoma (ACC) is a malignant tumor originating from the adrenal gland cortex with a heterogeneous but overall dismal prognosis in advanced stages. For more than 50 years, mitotane has remained a cornerstone for the treatment of ACC as adjuvant and palliative therapy. It has a very poor aqueous solubility of 0.1 mg/l and high partition coefficient in octanol/water (log P) value of 6. The commercially available dosage form is 500 mg tablets (Lysodren®). Even at doses up to 6 g/day (12 tablets in divided doses) for several months, > 50% patients do not achieve therapeutic plasma concentration > 14 mg/l due to poor water solubility, large volume of distribution and inter/intra-individual variability in bioavailability. This article aims to give a concise update of the clinical challenges associated with the administration of high-dose mitotane oral therapy which encompass the issues of poor bioavailability, difficult-to-predict pharmacokinetics and associated adverse events. Moreover, we present recent efforts to improve mitotane formulations. Their success has been limited, and we therefore propose an injectable mitotane formulation instead of oral administration, which could bypass many of the main issues associated with high-dose oral mitotane therapy. A parenteral administration of mitotane could not only help to alleviate the adverse effects but also circumvent the variable oral absorption, give better control over therapeutic plasma mitotane concentration and potentially shorten the time to achieve therapeutic drug plasma concentrations considerably. Mitotane as tablet form is currently the standard treatment for adrenocortical carcinoma. It has been used for 5 decades but suffers from highly variable responses in patients, subsequent adverse effects and overall lower response rate. This can be fundamentally linked to the exceedingly poor water solubility of mitotane itself. In terms of enhancing water solubility, a few research groups have attempted to develop better formulations of mitotane to overcome the issues associated with tablet dosage form. However, the success rate was limited, and these formulations did not make it into the clinics. In this article, we have comprehensively reviewed the properties of these formulations and discuss the reasons for their limited utility. Furthermore, we discuss a recently developed mitotane nanoformulation that led us to propose a novel approach to mitotane therapy, where intravenous delivery supplements the standard oral administration. With this article, we combine the current state of knowledge as a single piece of information about the various problems associated with the use of mitotane tablets, and herein we postulate the development of a new injectable mitotane formulation, which can potentially circumvent the major problems associated to mitotane's poor water solubility. KW - Mitotane KW - cancer KW - adrenal gland Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270476 SN - 2107-0180 VL - 46 IS - 5 ER - TY - JOUR A1 - Nadernezhad, Ali A1 - Ryma, Matthias A1 - Genç, Hatice A1 - Cicha, Iwona A1 - Jüngst, Thomasz A1 - Groll, Jürgen T1 - Melt electrowriting of isomalt for high‐resolution templating of embedded microchannels JF - Advanced Material Technologies N2 - Fabrication of microchannels using 3D printing of sugars as fugitive material is explored in different fields, including microfluidics. However, establishing reproducible methods for the controlled production of sugar structures with sub-100 μm dimensions remains a challenge. This study pioneers the processing of sugars by melt electrowriting (MEW) enabling the fabrication of structures with so far unprecedented resolution from Isomalt. Based on a systematic variation of process parameters, fibers with diameters down to 20 μm can be fabricated. The flexibility in the adjustment of fiber diameter by on-demand alteration of MEW parameters enables generating constructs with perfusable channels within polydimethylsiloxane molds. These channels have a diameter that can be adjusted from 30 to 200 μm in a single design. Taken together, the experiments show that MEW strongly benefits from the thermal and physical stability of Isomalt, providing a robust platform for the fabrication of small-diameter embedded microchannel systems. KW - medicine KW - sugar glass printing KW - embedded templating KW - melt electrowriting KW - microfibers KW - microfluidics KW - sacrificial printing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256401 VL - 6 IS - 8 ER -