TY - JOUR A1 - Schäfer, Natalie A1 - Bühler, Michael A1 - Heyer, Lisa A1 - Röhr, Merle I. S. A1 - Beuerle, Florian T1 - Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound JF - Chemistry—A European Journal N2 - A highly strained covalent organic cage compound was synthesized from hexahydroxy tribenzotriquinacene (TBTQ) and a meta-terphenyl-based diboronic acid with an additional benzoic acid substituent in 2’-position. Usually, a 120° bite angle in the unsubstituted ditopic linker favors the formation of a [4+6] cage assembly. Here, the introduction of the benzoic acid group is shown to lead to a perfectly preorganized circular hydrogen-bonding array in the cavity of a trigonal-bipyramidal [2+3] cage, which energetically overcompensates the additional strain energy caused by the larger mismatch in bite angles for the smaller assembly. The strained cage compound was analyzed by mass spectrometry and \(^{1}\)H, \(^{13}\)C and DOSY NMR spectroscopy. DFT calculations revealed the energetic contribution of the hydrogen-bonding template to the cage stability. Furthermore, molecular dynamics simulations on early intermediates indicate an additional kinetic effect, as hydrogen bonding also preorganizes and rigidifies small oligomers to facilitate the exclusive formation of smaller and more strained macrocycles and cages. KW - boronate esters KW - hydrogen bonding KW - dynamic covalent chemistry KW - density functional calculations KW - cage compounds Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256762 VL - 27 IS - 19 ER - TY - JOUR A1 - Röhr, Merle I. S. T1 - New theoretical methods for the exploration of functional landscapes JF - International Journal of Quantum Chemistry N2 - Molecular functionality can be often directly attributed to given properties of the electronic wavefunction. Analogous to the potential energy surface, these properties can be represented as a function of the nuclear coordinates, giving rise to molecular “functional landscapes.” However, so far there has been no possibility for their systematic investigation. This perspective aims to discuss the development of new theoretical methods based on the multistate extension of the metadynamics approach, employing electronic collective variables. This emerging methodology allows to explore functional landscapes and to gain a deeper understanding of the structure–function relation in molecules and complex molecular systems in the ground and excited electronic state. KW - structure–function relation KW - electronic collective variables KW - electronic wavefunction KW - metadynamics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257682 VL - 121 IS - 24 ER - TY - JOUR A1 - Meza-Chincha, Ana-Lucia A1 - Lindner, Joachim O. A1 - Schindler, Dorothee A1 - Schmidt, David A1 - Krause, Ana-Maria A1 - Röhr, Merle I. S. A1 - Mitrić, Roland A1 - Würthner, Frank T1 - Impact of substituents on molecular properties and catalytic activities of trinuclear Ru macrocycles in water oxidation N2 - Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites. KW - water oxidation KW - self-assembly KW - solar fuels KW - supramolecular materials KW - catalysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204653 UR - https://doi.org/10.1039/D0SC01097A SN - 2041-6539 ER - TY - JOUR A1 - Böhnke, Julian A1 - Dellermann, Theresa A1 - Celik, Mehmet Ali A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Demeshko, Serhiy A1 - Ewing, William C. A1 - Hammond, Kai A1 - Heß, Merlin A1 - Bill, Eckhard A1 - Welz, Eileen A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Engels, Bernd A1 - Meyer, Franc A1 - Braunschweig, Holger T1 - Isolation of diborenes and their 90°-twisted diradical congeners JF - Nature Communications N2 - Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound. KW - chemical bonding KW - diradicals KW - organometallic chemistry KW - diborenes KW - carbenes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160431 VL - 9 IS - Article number: 1197 ER - TY - JOUR A1 - Lisinetskaya, Polina A1 - Röhr, Merle I. S. A1 - Mitrić, Roland T1 - First-principles simulation of light propagation and exciton dynamics in metal cluster nanostructures JF - Applied Physics B N2 - We present a theoretical approach for the simulation of the electric field and exciton propagation in ordered arrays constructed of molecular-sized noble metal clusters bound to organic polymer templates. In order to describe the electronic coupling between individual constituents of the nanostructure we use the ab initio parameterized transition charge method which is more accurate than the usual dipole-dipole coupling. The electronic population dynamics in the nanostructure under an external laser pulse excitation is simulated by numerical integration of the time-dependent Schrodinger equation employing the fully coupled Hamiltonian. The solution of the TDSE gives rise to time-dependent partial point charges for each subunit of the nanostructure, and the spatio-temporal electric field distribution is evaluated by means of classical electrodynamics methods. The time-dependent partial charges are determined based on the stationary partial and transition charges obtained in the framework of the TDDFT. In order to treat large plasmonic nanostructures constructed of many constituents, the approximate self-consistent iterative approach presented in (Lisinetskaya and Mitric in Phys Rev B 89:035433, 2014) is modified to include the transition-charge-based interaction. The developed methods are used to study the optical response and exciton dynamics of Ag-3(+) and porphyrin-Ag-4 dimers. Subsequently, the spatio-temporal electric field distribution in a ring constructed of ten porphyrin-Ag-4 subunits under the action of circularly polarized laser pulse is simulated. The presented methodology provides a theoretical basis for the investigation of coupled light-exciton propagation in nanoarchitectures built from molecular size metal nanoclusters in which quantum confinement effects are important. KW - metal-cluster hybrid systems KW - exciton transfer KW - optical response KW - transition density KW - total electric field KW - electric field distribution KW - transition dipole moment KW - transition charge Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159193 UR - https://doi.org/10.1007/s00340-016-6436-6 SN - 0946-2171 N1 - This is a post-peer-review, pre-copyedit version of an article published in Apllied Physcis B. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00340-016-6436-6 VL - 122 IS - 6 ER - TY - JOUR A1 - Röhr, Merle I. S. A1 - Lisinetskaya, Polina G. A1 - Mitric, Roland T1 - Excitonic Properties of Ordered Metal Nanocluster Arrays: 2D Silver Clusters at Multiporphyrin Templates JF - Journal of Physical Chemistry A N2 - The design of ordered arrays of metal nanoclusters such as for example 2D cluster organic frameworks might open a new route towards the development of materials with tailored optical properties. Such systems could serve as plasmonically enhanced light-harvesting materials, sensors or catalysts. We present here a theoretical approach for the simulation of the optical properties of ordered arrays of metal clusters that is based on the ab initio parametrized Frenkel exciton model. We demonstrate that small atomically precise silver clusters can be assembled in one- and two-dimensional arrays on suitably designed porphyrin templates exhibiting remarkable optical properties. By employing explicit TDDFT calculations on smaller homologs, we show that the intrinsic optical properties of metal clusters are largely preserved but undergo J- and H-type excitonic coupling that results in controllable splitting of their excited states. Furthermore, ab initio parameterized Frenkel exciton model calculations allow us to predict an energetic splitting of up to 0.77 eV in extended two-dimensional square arrays and 0.79 eV in tilted square aggregates containing up to 25 cluster-porphyrin subunits. KW - Excitons KW - Porphyrin arrays Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159464 UR - https://pubs.acs.org/doi/10.1021/acs.jpca.6b04243 N1 - Accepted version VL - 120 IS - 26 ER -