TY - JOUR A1 - Munawar, Umair A1 - Zhou, Xiang A1 - Prommersberger, Sabrina A1 - Nerreter, Silvia A1 - Vogt, Cornelia A1 - Steinhardt, Maximilian J. A1 - Truger, Marietta A1 - Mersi, Julia A1 - Teufel, Eva A1 - Han, Seungbin A1 - Haertle, Larissa A1 - Banholzer, Nicole A1 - Eiring, Patrick A1 - Danhof, Sophia A1 - Navarro-Aguadero, Miguel Angel A1 - Fernandez-Martin, Adrian A1 - Ortiz-Ruiz, Alejandra A1 - Barrio, Santiago A1 - Gallardo, Miguel A1 - Valeri, Antonio A1 - Castellano, Eva A1 - Raab, Peter A1 - Rudert, Maximilian A1 - Haferlach, Claudia A1 - Sauer, Markus A1 - Hudecek, Michael A1 - Martinez-Lopez, J. A1 - Waldschmidt, Johannes A1 - Einsele, Hermann A1 - Rasche, Leo A1 - Kortüm, K. Martin T1 - Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma JF - Communications Biology N2 - The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM. KW - immunotherapy KW - translational research Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357609 VL - 6 ER - TY - JOUR A1 - Castañeda Londono, Paula Andrea A1 - Banholzer, Nicole A1 - Bannermann, Bridget A1 - Kramer, Susanne T1 - Is mRNA decapping activity of ApaH like phosphatases (ALPH’s) the reason for the loss of cytoplasmic ALPH’s in all eukaryotes but Kinetoplastida? JF - BMC Ecology and Evolution N2 - Background: ApaH like phosphatases (ALPHs) originate from the bacterial ApaH protein and are present in eukaryotes of all eukaryotic super-groups; still, only two proteins have been functionally characterised. One is ALPH1 from the Kinetoplastid Trypanosoma brucei that we recently found to be the mRNA decapping enzyme of the parasite. mRNA decapping by ALPHs is unprecedented in eukaryotes, which usually use nudix hydrolases, but the bacterial ancestor protein ApaH was recently found to decap non-conventional caps of bacterial mRNAs. These findings prompted us to explore whether mRNA decapping by ALPHs is restricted to Kinetoplastida or more widespread among eukaryotes. Results: We screened 824 eukaryotic proteomes with a newly developed Python-based algorithm for the presence of ALPHs and used the data to refine phylogenetic distribution, conserved features, additional domains and predicted intracellular localisation of ALPHs. We found that most eukaryotes have either no ALPH (500/824) or very short ALPHs, consisting almost exclusively of the catalytic domain. These ALPHs had mostly predicted non-cytoplasmic localisations, often supported by the presence of transmembrane helices and signal peptides and in two cases (one in this study) by experimental data. The only exceptions were ALPH1 homologues from Kinetoplastida, that all have unique C-terminal and mostly unique N-terminal extension, and at least the T. brucei enzyme localises to the cytoplasm. Surprisingly, despite of these non-cytoplasmic localisations, ALPHs from all eukaryotic super-groups had in vitro mRNA decapping activity. Conclusions: ALPH was present in the last common ancestor of eukaryotes, but most eukaryotes have either lost the enzyme since, or use it exclusively outside the cytoplasm in organelles in a version consisting of the catalytic domain only. While our data provide no evidence for the presence of further mRNA decapping enzymes among eukaryotic ALPHs, the broad substrate range of ALPHs that includes mRNA caps provides an explanation for the selection against the presence of a cytoplasmic ALPH protein as a mean to protect mRNAs from unregulated degradation. Kinetoplastida succeeded to exploit ALPH as their mRNA decapping enzyme, likely using the Kinetoplastida-unique N- and C-terminal extensions for regulation. KW - ApaH like phosphatase KW - ApaH KW - ALPH KW - Trypanosoma brucei KW - mRNA decapping KW - m7G cap KW - mRNA cap KW - ALPH1 KW - Kinetoplastida Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261180 VL - 21 ER -