TY - JOUR A1 - Englmeier, Jana A1 - von Hoermann, Christian A1 - Rieker, Daniel A1 - Benbow, Marc Eric A1 - Benjamin, Caryl A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Lackner, Tomáš A1 - Mitesser, Oliver A1 - Redlich, Sarah A1 - Riebl, Rebekka A1 - Rojas-Botero, Sandra A1 - Rummler, Thomas A1 - Salamon, Jörg-Alfred A1 - Sommer, David A1 - Steffan-Dewenter, Ingolf A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Zhang, Jie A1 - Müller, Jörg T1 - Dung-visiting beetle diversity is mainly affected by land use, while community specialization is driven by climate JF - Ecology and Evolution N2 - Dung beetles are important actors in the self-regulation of ecosystems by driving nutrient cycling, bioturbation, and pest suppression. Urbanization and the sprawl of agricultural areas, however, destroy natural habitats and may threaten dung beetle diversity. In addition, climate change may cause shifts in geographical distribution and community composition. We used a space-for-time approach to test the effects of land use and climate on α-diversity, local community specialization (H\(_2\)′) on dung resources, and γ-diversity of dung-visiting beetles. For this, we used pitfall traps baited with four different dung types at 115 study sites, distributed over a spatial extent of 300 km × 300 km and 1000 m in elevation. Study sites were established in four local land-use types: forests, grasslands, arable sites, and settlements, embedded in near-natural, agricultural, or urban landscapes. Our results show that abundance and species density of dung-visiting beetles were negatively affected by agricultural land use at both spatial scales, whereas γ-diversity at the local scale was negatively affected by settlements and on a landscape scale equally by agricultural and urban land use. Increasing precipitation diminished dung-visiting beetle abundance, and higher temperatures reduced community specialization on dung types and γ-diversity. These results indicate that intensive land use and high temperatures may cause a loss in dung-visiting beetle diversity and alter community networks. A decrease in dung-visiting beetle diversity may disturb decomposition processes at both local and landscape scales and alter ecosystem functioning, which may lead to drastic ecological and economic damage. KW - coleoptera KW - coprophagous beetles KW - decomposition KW - global change KW - hill numbers KW - network analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312846 SN - 2045-7758 VL - 12 IS - 10 ER - TY - JOUR A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Benjamin, Caryl A1 - Dhillon, Maninder Singh A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Hovestadt, Thomas A1 - Kollmann, Johannes A1 - Koellner, Thomas A1 - Kübert‐Flock, Carina A1 - Kunstmann, Harald A1 - Menzel, Annette A1 - Moning, Christoph A1 - Peters, Wibke A1 - Riebl, Rebekka A1 - Rummler, Thomas A1 - Rojas‐Botero, Sandra A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan‐Dewenter, Ingolf T1 - Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi‐scale experimental design JF - Methods in Ecology and Evolution N2 - Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs. KW - study design KW - biodiversity KW - climate change KW - ecosystem functioning KW - insect monitoring KW - land use KW - space-for-time approach KW - spatial scales Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258270 VL - 13 IS - 2 ER -