TY - JOUR A1 - Wollborn, Jakob A1 - Wunder, Christian A1 - Stix, Jana A1 - Neuhaus, Winfried A1 - Bruno, Rapahel R. A1 - Baar, Wolfgang A1 - Flemming, Sven A1 - Roewer, Norbert A1 - Schlegel, Nicolas A1 - Schick, Martin A. T1 - Phosphodiesterase-4 inhibition with rolipram attenuates hepatocellular injury in hyperinflammation in vivo and in vitro without influencing inflammation and HO-1 expression JF - Journal of Pharmacology and Pharmacotherapeutics N2 - Objective: To investigate the impact of the phophodiesterase-4 inhibition (PD-4-I) with rolipram on hepatic integrity in lipopolysaccharide (LPS) induced hyperinflammation. Materials and Methods: Liver microcirculation in rats was obtained using intravital microscopy. Macrohemodynamic parameters, blood assays, and organs were harvested to determine organ function and injury. Hyperinflammation was induced by LPS and PD-4-I rolipram was administered intravenously one hour after LPS application. Cell viability of HepG2 cells was measured by EZ4U-kit based on the dye XTT. Experiments were carried out assessing the influence of different concentrations of tumor necrosis factor alpha (TNF-α) and LPS with or without PD-4-I. Results: Untreated LPS-induced rats showed significantly decreased liver microcirculation and increased hepatic cell death, whereas LPS + PD-4-I treatment could improve hepatic volumetric flow and cell death to control level whithout influencing the inflammatory impact. In HepG2 cells TNF-α and LPS significantly reduced cell viability. Coincubation with PD-4-I increased HepG2 viability to control levels. The heme oxygenase 1 (HO-1) pathway did not induce the protective effect of PD-4-I. Conclusion: Intravenous PD-4-I treatment was effective in improving hepatic microcirculation and hepatic integrity, while it had a direct protective effect on HepG2 viability during inflammation. KW - acute liver failure KW - endotoxemia KW - phosphodiesterase KW - rolipram KW - sepsis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149336 VL - 6 IS - 1 ER - TY - JOUR A1 - Konrad, Franziska M. A1 - Bury, Annette A1 - Schick, Martin A. A1 - Ngamsri, Kristian-Christos A1 - Reutershan, Jörg T1 - The Unrecognized Effects of Phosphodiesterase 4 on Epithelial Cells in Pulmonary Inflammation JF - PLoS ONE N2 - Acute pulmonary inflammation is characterized by migration of polymorphonuclear neutrophils (PMNs) into the different compartments of the lung, passing an endothelial and epithelial barrier. Recent studies showed evidence that phosphodiesterase (PDE) 4-inhibitors stabilized endothelial cells. PDE4B and PDE4D subtypes play a pivotal role in inflammation, whereas blocking PDE4D is suspected to cause gastrointestinal side effects. We thought to investigate the particular role of the PDE4-inhibitors roflumilast and rolipram on lung epithelium. Acute pulmonary inflammation was induced by inhalation of LPS. PDE4-inhibitors were administered i.p. or nebulized after inflammation. The impact of PDE4-inhibitors on PMN migration was evaluated in vivo and in vitro. Microvascular permeability, cytokine levels, and PDE4B and PDE4D expression were analyzed. In vivo, both PDE4-inhibitors decreased transendothelial and transepithelial migration even when administered after inflammation, whereas roflumilast showed a superior effect compared to rolipram on the epithelium. Both inhibitors decreased TNF\(\alpha\), IL6, and CXCL2/3. CXCL1, the strong PMN chemoattractant secreted by the epithelium, was significantly more reduced by roflumilast. In vitro assays with human epithelium also emphasized the pivotal role of roflumilast on the epithelium. Additionally, LPS-induced stress fibers, an essential requirement for a direct migration of PMNs into the alveolar space, were predominantly reduced by roflumilast. Expression of PDE4B and PDE4D were both increased in the lungs by LPS, PDE4-inhibitors decreased mainly PDE4B. The topical administration of PDE4-inhibitors was also effective in curbing down PMN migration, further highlighting the clinical potential of these compounds. In pulmonary epithelial cells, both subtypes were found coexistent around the nucleus and the cytoplasm. In these epithelial cells, LPS increased PDE4B and, to a lesser extend, PDE4D, whereas the effect of the inhibitors was prominent on the PDE4B subtype. In conclusion, we determined the pivotal role of the PDE4-inhibitor roflumilast on lung epithelium and emphasized its main effect on PDE4B in hyperinflammation. KW - acute lung injury KW - PDE4-inhibitor roflumilast KW - GRO alpha KW - expression KW - 4D KW - respiratory distress syndrome KW - mice KW - infiltration KW - rolipram KW - disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143203 VL - 10 IS - 4 ER - TY - JOUR A1 - Schick, Martin A. A1 - Baar, Wolfgang A1 - Flemming, Sven A1 - Schlegel, Nicolas A1 - Wollborn, Jakob A1 - Held, Christopher A1 - Schneider, Reinhard A1 - Brock, Robert W. A1 - Roewer, Norbert A1 - Wunder, Christian T1 - Sepsis-induced acute kidney injury by standardized colon ascendens stent peritonitis in rats - a simple, reproducible animal model JF - Intensive Care Medicine Experimental N2 - Background Up to 50% of septic patients develop acute kidney injury (AKI). The pathomechanism of septic AKI is poorly understood. Therefore, we established an innovative rodent model to characterize sepsis-induced AKI by standardized colon ascendens stent peritonitis (sCASP). The model has a standardized focus of infection, an intensive care set up with monitoring of haemodynamics and oxygenation resulting in predictable impairment of renal function, AKI parameters as well as histopathology scoring. Methods Anaesthetized rats underwent the sCASP procedure, whereas sham animals were sham operated and control animals were just monitored invasively. Haemodynamic variables and blood gases were continuously measured. After 24 h, animals were reanesthetized; cardiac output (CO), inulin and PAH clearances were measured and later on kidneys were harvested; and creatinine, urea, cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) were analysed. Additional sCASP-treated animals were investigated after 3 and 9 days. Results All sCASP-treated animals survived, whilst ubiquitous peritonitis and significantly deteriorated clinical and macrohaemodynamic sepsis signs after 24 h (MAP, CO, heart rate) were obvious. Blood analyses showed increased lactate and IL-6 levels as well as leucopenia. Urine output, inulin and PAH clearance were significantly decreased in sCASP compared to sham and control. Additionally, significant increase in cystatin C and NGAL was detected. Standard parameters like serum creatinine and urea were elevated and sCASP-induced sepsis increased significantly in a time-dependent manner. The renal histopathological score of sCASP-treated animals deteriorated after 3 and 9 days. Conclusions The presented sCASP method is a standardized, reliable and reproducible method to induce septic AKI. The intensive care set up, continuous macrohaemodynamic and gas exchange monitoring, low mortality rate as well as the opportunity of detailed analyses of kidney function and impairments are advantages of this setup. Thus, our described method may serve as a new standard for experimental investigations of septic AKI. KW - CASP KW - animal model KW - acute kidney injury KW - sepsis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126111 VL - 2 IS - 34 ER -