TY - JOUR A1 - Lachaud, Christophe A1 - Castor, Dennis A1 - Hain, Karolina A1 - Muñoz, Ivan A1 - Wilson, Jamie A1 - MacArtney, Thomas J. A1 - Schindler, Detlev A1 - Rouse, John T1 - Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia JF - Journal of Cell Science N2 - Defects in SLX4, a scaffold for DNA repair nucleases, cause Fanconi anemia due to defective repair of inter-strand DNA crosslinks (ICLs). Some FA patients have an SLX4 deletion removing two tandem UBZ4-type ubiquitin-binding domains, implicated in protein recruitment to sites of DNA damage. Here we show that human SLX4 is recruited to sites of ICL induction but the UBZ-deleted form of SLX4 in cells from FA patients is not. SLX4 recruitment does not require ubiquitination of FANCD2, or the E3 ligases RNF8, RAD18 and BRCA1. We show that the first (UBZ-1), but not the second UBZ domain of SLX4 binds to ubiquitin polymers with a preference for K63-linked chains. Furthermore, UBZ-1 is required for SLX4 recruitment to ICL sites, and for efficient ICL repair in murine fibroblasts. SLX4 UBZ-2 domain does not bind ubiquitin in vitro or contribute to ICL repair, but it is required for resolution of Holliday junctions in vivo. These data shed light on SLX4 recruitment, and suggest that there remain to be identified ubiquitinated ligands and E3 ligases critical for ICL repair. KW - UBZ KW - ICL KW - fanconi anemia KW - ubiquitin KW - FANCP KW - SLX4 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120908 SN - 1477-9137 VL - 127 IS - 13 ER - TY - JOUR A1 - Kohlhase, Sandra A1 - Bogdanova, Natalia V. A1 - Schürmann, Peter A1 - Bermisheva, Marina A1 - Khusnutdinova, Elza A1 - Antonenkova, Natalia A1 - Park-Simon, Tjoung-Won A1 - Hillemanns, Peter A1 - Meyer, Andreas A1 - Christiansen, Hans A1 - Schindler, Detlev A1 - Dörk, Thilo T1 - Mutation Analysis of the ERCC4/FANCQ Gene in Hereditary Breast Cancer JF - PLOS ONE N2 - The ERCC4 protein forms a structure-specific endonuclease involved in the DNA damage response. Different cancer syndromes such as a subtype of Xeroderma pigmentosum, XPF, and recently a subtype of Fanconi Anemia, FA-Q, have been attributed to biallelic ERCC4 gene mutations. To investigate whether monoallelic ERCC4 gene defects play some role in the inherited component of breast cancer susceptibility, we sequenced the whole ERCC4 coding region and flanking untranslated portions in a series of 101 Byelorussian and German breast cancer patients selected for familial disease (set 1, n = 63) or for the presence of the rs1800067 risk haplotype (set 2, n = 38). This study confirmed six known and one novel exonic variants, including four missense substitutions but no truncating mutation. Missense substitution p.R415Q (rs1800067), a previously postulated breast cancer susceptibility allele, was subsequently screened for in a total of 3,698 breast cancer cases and 2,868 controls from Germany, Belarus or Russia. The Gln415 allele appeared protective against breast cancer in the German series, with the strongest effect for ductal histology (OR 0.67; 95%CI 0.49; 0.92; p = 0.003), but this association was not confirmed in the other two series, with the combined analysis yielding an overall Mantel-Haenszel OR of 0.94 (95% CI 0.81; 1.08). There was no significant effect of p.R415Q on breast cancer survival in the German patient series. The other three detected ERCC4 missense mutations included two known rare variants as well as a novel substitution, p.E17V, that we identified on a p.R415Q haplotype background. The p.E17V mutation is predicted to be probably damaging but was present in just one heterozygous patient. We conclude that the contribution of ERCC4/FANCQ coding mutations to hereditary breast cancer in Central and Eastern Europe is likely to be small. KW - ERCC1-XPF KW - susceptibility loci KW - ERCC4 KW - genome-wide association KW - fanconi-anemia KW - ATM gene KW - endonuclease KW - risk KW - requency KW - variants Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117582 VL - 9 IS - 1 ER - TY - JOUR A1 - von Bernuth, Horst A1 - Ravindran, Ethiraj A1 - Du, Hang A1 - Froehler, Sebastian A1 - Strehl, Karoline A1 - Kraemer, Nadine A1 - Issa-Jahns, Lina A1 - Amulic, Borko A1 - Ninnemann, Olaf A1 - Xiao, Mei-Sheng A1 - Eirich, Katharina A1 - Koelsch, Uwe A1 - Hauptmann, Kathrin A1 - John, Rainer A1 - Schindler, Detlev A1 - Wahn, Volker A1 - Chen, Wei A1 - Kaindl, Angela M. T1 - Combined immunodeficiency develops with age in Immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2) JF - Orphanet Journal of Rare Dieeases N2 - The autosomal recessive immunodeficiency-centromeric instability-facial anomalies syndrome (ICF) is characterized by immunodeficiency, developmental delay, and facial anomalies. ICF2, caused by biallelic ZBTB24 gene mutations, is acknowledged primarily as an isolated B-cell defect. Here, we extend the phenotype spectrum by describing, in particular, for the first time the development of a combined immune defect throughout the disease course as well as putative autoimmune phenomena such as granulomatous hepatitis and nephritis. We also demonstrate impaired cell-proliferation and increased cell death of immune and non-immune cells as well as data suggesting a chromosome separation defect in addition to the known chromosome condensation defect. KW - ZBTB24 KW - ICF2 KW - granulomas KW - facial anomalies KW - centromeric instability KW - intellectual disability KW - lymphoma KW - ZBTB24 mutations KW - DNMT3B KW - TYPE-2 KW - immunodeficiency KW - microcephaly KW - DNA methyltransferase gene Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114859 VL - 9 ER -