TY - JOUR A1 - Raschig, Martina A1 - Ramírez‐Zavala, Bernardo A1 - Wiest, Johannes A1 - Saedtler, Marco A1 - Gutmann, Marcus A1 - Holzgrabe, Ulrike A1 - Morschhäuser, Joachim A1 - Meinel, Lorenz T1 - Azobenzene derivatives with activity against drug‐resistant Candida albicans and Candida auris JF - Archiv der Pharmazie N2 - Increasing resistance against antimycotic drugs challenges anti‐infective therapies today and contributes to the mortality of infections by drug‐resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'‐dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole‐susceptible and fluconazole‐resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds. KW - antifungal drug KW - azobenzenes KW - Candida auris KW - Candida albicans Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312295 VL - 356 IS - 2 ER - TY - JOUR A1 - Hofmann, Julian A1 - Spatz, Philipp A1 - Walther, Rasmus A1 - Gutmann, Marcus A1 - Maurice, Tangui A1 - Decker, Michael T1 - Synthesis and Biological Evaluation of Flavonoid-Cinnamic Acid Amide Hybrids with Distinct Activity against Neurodegeneration in Vitro and in Vivo JF - Chemistry-A European Journal N2 - Flavonoids are polyphenolic natural products and have shown significant potential as disease-modifying agents against neurodegenerative disorders like Alzheimer's disease (AD), with activities even in vivo. Hybridization of the natural products taxifolin and silibinin with cinnamic acid led to an overadditive effect of these compounds in several phenotypic screening assays related to neurodegeneration and AD. Therefore, we have exchanged the flavonoid part of the hybrids with different flavonoids, which show higher efficacy than taxifolin or silibinin, to improve the activity of the respective hybrids. Chemical connection between the flavonoid and cinnamic acid was realized by an amide instead of a labile ester bond to improve stability towards hydrolysis. To investigate the influence of a double bond at the C-ring of the flavonoid, the dehydro analogues of the respective hybrids were also synthesized. All compounds obtained show neuroprotection against oxytosis, ferroptosis and ATP-depletion, respectively, in the murine hippocampal cell line HT22. Interestingly, the taxifolin and the quercetin derivatives are the most active compounds, whereby the quercetin derivate shows even more pronounced activity than the taxifolin one in all assays applied. As aimed for, no hydrolysis product was found in cellular uptake experiments after 4 h whereas different metabolites were detected. Furthermore, the quercetin-cinnamic acid amide showed pronounced activity in an in vivo AD mouse model at a remarkably low dose of 0.3 mg/kg. KW - AD mouse modele KW - oxytosis/ferroptosis KW - natural product hybrids KW - Alzheimer's diseas Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318878 VL - 28 IS - 39 ER - TY - JOUR A1 - Hahn, Lukas A1 - Beudert, Matthias A1 - Gutmann, Marcus A1 - Keßler, Larissa A1 - Stahlhut, Philipp A1 - Fischer, Lena A1 - Karakaya, Emine A1 - Lorson, Thomas A1 - Thievessen, Ingo A1 - Detsch, Rainer A1 - Lühmann, Tessa A1 - Luxenhofer, Robert T1 - From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking JF - Macromolecular Bioscience N2 - Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification. KW - chemical crosslinking KW - biofabrication KW - bioprinting KW - hydrogels Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257542 VL - 21 IS - 10 ER - TY - THES A1 - Gutmann, Marcus T1 - Functionalization of cells, extracellular matrix components and proteins for therapeutic application T1 - Funktionalisierung von Zellen, extrazellulären Matrixbestandteilen und Proteinen für die therapeutische Anwendung N2 - Glycosylation is a biochemical process leading to the formation of glycoconjugates by linking glycans (carbohydrates) to proteins, lipids and various small molecules. The glycans are formed by one or more monosaccharides that are covalently attached, thus offering a broad variety depending on their composition, site of glycan linkage, length and ramification. This special nature provides an exceptional and fine tunable possibility in fields of information transfer, recognition, stability and pharmacokinetic. Due to their intra- and extracellular omnipresence, glycans fulfill an essential role in the regulation of different endogenous processes (e.g. hormone action, immune surveillance, inflammatory response) and act as a key element for maintenance of homeostasis. The strategy of metabolic glycoengineering enables the integration of structural similar but chemically modified monosaccharide building blocks into the natural given glycosylation pathways, thereby anchoring them in the carbohydrate architecture of de novo synthesized glycoconjugates. The available unnatural sugar molecules which are similar to endogenous sugar molecules show minimal perturbation in cell function and - based on their multitude functional groups - offer the potential of side directed coupling with a target substance/structure as well as the development of new biological properties. The chemical-enzymatic strategy of glycoengineering provides a valuable complement to genetic approaches. This thesis primarily focuses on potential fields of application for glycoengineering and its further use in clinic and research. The last section of this work outlines a genetic approach, using special Escherichia coli systems, to integrate chemically tunable amino acids into the biosynthetic pathway of proteins, enabling specific and site-directed coupling with target substances. With the genetic information of the methanogen archaea, Methanosarcina barkeri, the E. coli. system is able to insert a further amino acid, the pyrrolysine, at the ribosomal site during translation of the protein. The natural stop-codon UAG (amber codon) is used for this newly obtained proteinogenic amino acid. Chapter I describes two systems for the integration of chemically tunable monosaccharides and presents methods for characterizing these systems. Moreover, it gives a general overview of the structure as well as intended use of glycans and illustrates different glycosylation pathways. Furthermore, the strategy of metabolic glycoengineering is demonstrated. In this context, the structure of basic building blocks and the epimerization of monosaccharides during their metabolic fate are discussed. Chapter II translates the concept of metabolic glycoengineering to the extracellular network produced by fibroblasts. The incorporation of chemically modified sugar components in the matrix provides an innovative, elegant and biocompatible method for site-directed coupling of target substances. Resident cells, which are involved in the de novo synthesis of matrices, as well as isolated matrices were characterized and compared to unmodified resident cells and matrices. The natural capacity of the matrix can be extended by metabolic glycoengineering and enables the selective immobilization of a variety of therapeutic substances by combining enzymatic and bioorthogonal reaction strategies. This approach expands the natural ability of extracellular matrix (ECM), like the storage of specific growth factors and the recruitment of surface receptors along with synergistic effects of bound substances. By the selection of the cell type, the production of a wide range of different matrices is possible. Chapter III focuses on the target-oriented modification of cell surface membranes of living fibroblast and human embryonic kidney cells. Chemically modified monosaccharides are inserted by means of metabolic glycoengineering and are then presented on the cell surface. These monosaccharides can later be covalently coupled, by “strain promoted azide-alkyne cycloaddition“ (SPAAC) and/or “copper(I)-catalyzed azide-alkyne cycloaddition“ (CuAAC), to the target substance. Due to the toxicity of the copper catalysator in the CuAAC, cytotoxicity analyses were conducted to determine the in vivo tolerable range for the use of CuAAC on living cell systems. Finally, the efficacy of both bioorthogonal reactions was compared. Chapter IV outlines two versatile carrier – spacer – payload delivery systems based on an enzymatic cleavable linker, triggered by disease associated protease. In the selection of carrier systems (i) polyethylene glycol (PEG), a well-studied, Food and Drug Administration approved substance and very common tool to increase the pharmacokinetic properties of therapeutic agents, was chosen as a carrier for non-targeting systems and (ii) Revacept, a human glycoprotein VI antibody, was chosen as a carrier for targeting systems. The protease sensitive cleavable linker was genetically inserted into the N-terminal region of fibroblast growth factor 2 (FGF-2) without jeopardizing protein activity. By exchanging the protease sensitive sequence or the therapeutic payload, both systems represent a promising and adaptable approach for establishing therapeutic systems with bioresponsive release, tailored to pre-existing conditions. In summary, by site-specific functionalization of various delivery platforms, this thesis establishes an essential cornerstone for promising strategies advancing clinical application. The outlined platforms ensure high flexibility due to exchanging single or multiple elements of the system, individually tailoring them to the respective disease or target site. N2 - Glykosylierung beschreibt einen auf biochemischen Reaktionen basierenden Prozess, welcher durch die Verknüpfung von Glykanen (Kohlenhydraten) mit Proteinen, Lipiden oder einer Vielzahl kleiner organischer Moleküle zur Bildung von Glykokonjugaten führt. Die Entstehung der Kohlenhydratketten erfolgt hierbei durch die kovalente Verknüpfung eines oder mehrerer verschiedener Einfachzucker, welche auf Grund unterschiedlicher Zusammensetzung der Bausteine, Verknüpfungsregion, Länge und Verzweigung eine hohe Diversität aufweisen. Diese Besonderheit ermöglicht eine außergewöhnliche Feinabstimmung im Bereich der Informationsübertragung, Erkennung, Stabilität und Pharmakokinetik. Aufgrund ihrer intra- und extrazellulären Omnipräsenz spielen Glykane zudem eine essentielle Rolle in der Regulierung verschiedenster körpereigener Prozesse (z.B. hormonelle Wirkung, Immunmodulation, Entzündungsreaktionen) und sind folglich ein zentraler Bestandteil bei der Aufrechterhaltung der zellulären Homöostase. Durch die Strategie des „Glycoengineering“ ist man in der Lage, strukturähnliche, aber chemisch modifizierte Zuckerbausteine in die natürlichen Glykosilierungswege einzubinden und diese somit in der Architektur der Kohlenstoffketten von neu-synthetisierten Glykokonjugaten zu verankern. Die hierfür zur Verfügung stehenden, unnatürlichen Zuckermoleküle führen auf Grund ihrer Ähnlichkeit zu körpereigenen Zuckern zu kaum relevanten Störungen der zellulären Funktion, bieten aber durch zahlreiche funktionelle Gruppen die Möglichkeit der gezielten Verknüpfung mit einer Zielsubstanz/-struktur und der Bildung neuer biologischer Eigenschaften. „Glycoengineering“ als chemisch-enzymatische Strategie bietet dabei eine wertvolle Ergänzung zu gentechnischen Ansätzen. Entsprechend beschäftigt sich diese Dissertation primär mit der Beschreibung potentieller Anwendungsgebiete des „Glycoengineering“ und dessen möglichen Einsatz in Klinik und Forschung. Der letzte Abschnitt dieser Arbeit beschreibt einen gentechnischen Ansatz, bei dem mit Hilfe von speziellen Escherichia coli Systemen chemisch modifizierbare Aminosäuren in den Biosyntheseweg von Proteinen eingebunden werden, wodurch anschließend eine spezifische und gerichtete Verknüpfung mit Zielsubstanzen ermöglicht wird. Hierbei benutzt das E. coli-System die genetische Information des methanbildenden Archaeas, Methanosarcina barkeri, mit der es in der Lage ist, eine weitere Aminosäure, das Pyrrolysin, bei der Translation eines Proteins am Ribosom einzufügen. Als Codon für diese neu gewonnene proteinogene Aminosäure fungiert das natürliche Stopp-Codon („amber codon“) UAG. Kapitel I beschreibt zwei Systeme für den Einbau von chemisch modifizierten Zuckern und zeigt Methoden für die Charakterisierung dieser Systeme auf. Es gibt zudem eine allgemeine Übersicht über den Aufbau und die Verwendung von Glykanen und veranschaulicht verschiedene Glykosilierungswege. Des Weiteren wird auch die Strategie des „metabolic glycoengineering“ erläutert. Hierbei wird der Aufbau der dabei verwendeten Grundbausteine dargestellt und auf die Epimerisierung der Zucker während deren Metabolismus eingegangen. Kapitel II überträgt das Konzept des „metabolic glycoengineering“ auf das extrazelluläre Netzwerk von Fibroblasten. Hierbei bietet der Einbau eines chemisch modifizierten Zuckerbausteins in die Matrix eine neue, elegante und biokompatible Möglichkeit der gezielten Verknüpfung von Zielsubstanzen. Die an der Neusynthese der Matrix beteiligten Bindegewebszellen sowie die isolierte Matrix wurden dabei im Vergleich zu nicht modifizierten Bindegewebszellen und Matrices charakterisiert. Durch den Aspekt des “metabolic glycoengineering” wird die natürliche Fähigkeit der Matrix erweitert und ermöglicht durch die Kombination verschiedener enzymatischer und bioorthogonal-chemischer Strategien die selektive Immobilisation einer Vielzahl von therapeutischen Substanzen. Dieser Ansatz erweitert das natürliche Spektrum der Extrazellulärmatrix (ECM), wie Bindung von spezifischen Wachstumsfaktoren, Rekrutierung von Oberflächenrezeptoren und damit einhergehend synergistische Effekte der gebundenen Stoffe. Durch die Auswahl des Zelltyps wird zudem ein breites Spektrum an verschiedenen Matrices ermöglicht. Kapitel III befasst sich mit der Möglichkeit, die Zellmembran von lebenden Fibroblasten sowie menschliche embryonale Nierenzellen gezielt zu verändern. Durch „metabolic glycoengineering“ werden auch hier chemisch modifizierte Zuckerbausteine eingefügt, die dabei auf der Zelloberfläche präsentiert werden. Anschließend können diese Zucker mittels „ringspannungs-geförderter Azid-Alkin Cycloaddition“ (“strain promoted azide-alkyne cycloaddition“, SPAAC) und „Kupfer(I)-katalysierter Azid-Alkin Cycloaddition“ (“copper(I)-catalyzed azide-alkyne cycloaddition“, CuAAC) umgesetzt werden, was eine kovalente Verknüpfung mit einer Zielsubstanz ermöglicht. Aufgrund der Toxizität des Kupferkatalysators in der CuAAC wurde anhand von zytotoxischen Untersuchungen nach einem in vivo vertretbaren Bereich für diese Reaktion gesucht, um die CuAAC auch für lebende Systeme verwendbar zu machen. Zuletzt wurde die Effizienz dieser bioorthogonalen Reaktionen miteinander verglichen. Kapitel IV beschreibt zwei vielseitig einsetzbare „carrier – spacer – payload“ Therapiesysteme (Träger-Verbindungsstück-Therapeutikum-Systeme), basierend auf einem Verbindungsstück (Linker), dessen Spaltung enzymatisch durch krankheitsspezifisch prävalente Proteasen ausgelöst wird. Bei der Auswahl der Trägersysteme wurde für das nicht-zielgerichtete System Polyethylenglycol (PEG) als Träger eingesetzt, eine gut untersuchte, „Food and Drug Administration“ zugelassene Substanz, welche als sehr gängiges Mittel zur Verbesserung der pharmakologischen Eigenschaften verwendet wird. Für das zielgerichtete System diente Revacept als Träger, ein humaner Glykoprotein VI-Antikörper. Der Protease-sensitive Linker wurde genetisch in der N-terminalen Region des Fibroblasten-Wachstumsfaktor 2 verankert, ohne dabei die Bioaktivität zu gefährden. Durch den Austausch der Protease-sensitiven Erkennungssequenz oder des Therapeutikums stellen beide Systeme einen vielversprechenden und anpassungsfähigen Ansatz für therapeutische Systeme dar, welche auf ein bereits bestehendes Erkrankungsbild genau zugeschnitten werden können. Zusammengefasst setzt diese Arbeit durch eine spezifische Funktionalisierung von verschiedenen Therapiesysteme einen wichtigen Meilenstein für vielversprechende Strategien zur Verbesserung der klinischen Anwendbarkeit. Durch den Austausch einer oder mehrerer Komponenten des Systems gewährleisten die hier beschriebenen Therapiesysteme eine hohe Anpassungsfähigkeit, wodurch sie individuell auf die jeweilige Krankheit oder den jeweiligen Zielort angepasst werden können. KW - Glykosylierung KW - Extrazelluläre Matrix KW - Zelloberfläche KW - Antikörper KW - Fibroblastenwachstumsfaktor KW - Glycoengineering KW - Drug delivery platforms KW - Protease-sensitive release Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170602 ER - TY - JOUR A1 - Cataldi, Eleonora A1 - Raschig, Martina A1 - Gutmann, Marcus A1 - Geppert, Patrick T. A1 - Ruopp, Matthias A1 - Schock, Marvin A1 - Gerwe, Hubert A1 - Bertermann, Rüdiger A1 - Meinel, Lorenz A1 - Finze, Maik A1 - Nowak‐Król, Agnieszka A1 - Decker, Michael A1 - Lühmann, Tessa T1 - Amber Light Control of Peptide Secondary Structure by a Perfluoroaromatic Azobenzene Photoswitch JF - ChemBioChem N2 - The incorporation of photoswitches into the molecular structure of peptides and proteins enables their dynamic photocontrol in complex biological systems. Here, a perfluorinated azobenzene derivative triggered by amber light was site‐specifically conjugated to cysteines in a helical peptide by perfluoroarylation chemistry. In response to the photoisomerization (trans→cis) of the conjugated azobenzene with amber light, the secondary structure of the peptide was modulated from a disorganized into an amphiphilic helical structure. KW - amber light KW - decafluoroazobezene KW - peptide stapling KW - photocontrol KW - perfluoroarylation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312480 VL - 24 IS - 5 ER - TY - JOUR A1 - Altmann, Stephan A1 - Mut, Jürgen A1 - Wolf, Natalia A1 - Meißner-Weigl, Jutta A1 - Rudert, Maximilian A1 - Jakob, Franz A1 - Gutmann, Marcus A1 - Lühmann, Tessa A1 - Seibel, Jürgen A1 - Ebert, Regina T1 - Metabolic glycoengineering in hMSC-TERT as a model for skeletal precursors by using modified azide/alkyne monosaccharides JF - International Journal of Molecular Sciences N2 - Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac\(_4\)ManNAz) and N-alkyneacetylmannosamine (Ac\(_4\)ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac\(_4\)ManNAz was detectable for up to six days while Ac\(_4\)ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors. KW - hMSC-TERT KW - metabolic glycoengineering KW - glycocalyx KW - modified monosaccharides KW - click chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259247 SN - 1422-0067 VL - 22 IS - 6 ER -