TY - JOUR A1 - Balkenhol, Johannes A1 - Kaltdorf, Kristin V. A1 - Mammadova-Bach, Elmina A1 - Braun, Attila A1 - Nieswandt, Bernhard A1 - Dittrich, Marcus A1 - Dandekar, Thomas T1 - Comparison of the central human and mouse platelet signaling cascade by systems biological analysis JF - BMC Genomics N2 - Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences. KW - interspecies comparison KW - transcriptome KW - proteome KW - platelet KW - network KW - signaling KW - mouse KW - human KW - interactome KW - cascade Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230377 VL - 21 ER - TY - JOUR A1 - Jessen, Christina A1 - Kreß, Julia K. C. A1 - Baluapuri, Apoorva A1 - Hufnagel, Anita A1 - Schmitz, Werner A1 - Kneitz, Susanne A1 - Roth, Sabine A1 - Marquardt, André A1 - Appenzeller, Silke A1 - Ade, Casten P. A1 - Glutsch, Valerie A1 - Wobser, Marion A1 - Friedmann-Angeli, José Pedro A1 - Mosteo, Laura A1 - Goding, Colin R. A1 - Schilling, Bastian A1 - Geissinger, Eva A1 - Wolf, Elmar A1 - Meierjohann, Svenja T1 - The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression JF - Oncogene N2 - The transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H\(_2\)O\(_2\) or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma. KW - NRF2 KW - melanoma malignancy KW - COX2 expression Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235064 SN - 0950-9232 VL - 39 ER - TY - JOUR A1 - Herrmann, Andreas B. A1 - Müller, Martha‐Lena A1 - Orth, Martin F. A1 - Müller, Jörg P. A1 - Zernecke, Alma A1 - Hochhaus, Andreas A1 - Ernst, Thomas A1 - Butt, Elke A1 - Frietsch, Jochen J. T1 - Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance JF - Journal of Cellular and Molecular Medicine N2 - Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR‐ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR‐ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1‐mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell‐mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance. KW - BCR‐ABL KW - CML KW - CXCR4 KW - LASP1 KW - nilotinib KW - precursor cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214122 VL - 24 IS - 5 SP - 2942 EP - 2955 ER - TY - JOUR A1 - Knapp, Oliver A1 - Benz, Roland T1 - Membrane activity and channel formation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis in lipid bilayer membranes JF - Toxins N2 - The Gram-negative bacterium Bordetella pertussis is the cause of whooping cough. One of its pathogenicity factors is the adenylate cyclase toxin (CyaA) secreted by a Type I export system. The 1706 amino acid long CyaA (177 kDa) belongs to the continuously increasing family of repeat in toxin (RTX) toxins because it contains in its C-terminal half a high number of nine-residue tandem repeats. The protein exhibits cytotoxic and hemolytic activities that target primarily myeloid phagocytic cells expressing the αMβ2 integrin receptor (CD11b/CD18). CyaA represents an exception among RTX cytolysins because the first 400 amino acids from its N-terminal end possess a calmodulin-activated adenylate cyclase (AC) activity. The entry of the AC into target cells is not dependent on the receptor-mediated endocytosis pathway and penetrates directly across the cytoplasmic membrane of a variety of epithelial and immune effector cells. The hemolytic activity of CyaA is rather low, which may have to do with its rather low induced permeability change of target cells and its low conductance in lipid bilayer membranes. CyaA forms highly cation-selective channels in lipid bilayers that show a strong dependence on aqueous pH. The pore-forming activity of CyaA but not its single channel conductance is highly dependent on Ca\(^{2+}\) concentration with a half saturation constant of about 2 to 4 mM. KW - pore formation KW - adenylate cyclase toxin KW - CyaA KW - Bordetella pertussis KW - membrane interaction KW - lipid bilayer Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203362 SN - 2072-6651 VL - 12 IS - 3 ER - TY - JOUR A1 - Butt, Elke A1 - Stempfle, Katrin A1 - Lister, Lorenz A1 - Wolf, Felix A1 - Kraft, Marcella A1 - Herrmann, Andreas B. A1 - Viciano, Cristina Perpina A1 - Weber, Christian A1 - Hochhaus, Andreas A1 - Ernst, Thomas A1 - Hoffmann, Carsten A1 - Zernecke, Alma A1 - Frietsch, Jochen J. T1 - Phosphorylation-dependent differences in CXCR4-LASP1-AKT1 interaction between breast cancer and chronic myeloid leukemia JF - Cells N2 - The serine/threonine protein kinase AKT1 is a downstream target of the chemokine receptor 4 (CXCR4), and both proteins play a central role in the modulation of diverse cellular processes, including proliferation and cell survival. While in chronic myeloid leukemia (CML) the CXCR4 is downregulated, thereby promoting the mobilization of progenitor cells into blood, the receptor is highly expressed in breast cancer cells, favoring the migratory capacity of these cells. Recently, the LIM and SH3 domain protein 1 (LASP1) has been described as a novel CXCR4 binding partner and as a promoter of the PI3K/AKT pathway. In this study, we uncovered a direct binding of LASP1, phosphorylated at S146, to both CXCR4 and AKT1, as shown by immunoprecipitation assays, pull-down experiments, and immunohistochemistry data. In contrast, phosphorylation of LASP1 at Y171 abrogated these interactions, suggesting that both LASP1 phospho-forms interact. Finally, findings demonstrating different phosphorylation patterns of LASP1 in breast cancer and chronic myeloid leukemia may have implications for CXCR4 function and tyrosine kinase inhibitor treatment. KW - LASP1 KW - CXCR4 KW - AKT1 KW - CML KW - breast cancer Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200638 SN - 2073-4409 VL - 9 IS - 2 ER - TY - JOUR A1 - Benz, Roland T1 - RTX-Toxins JF - Toxins N2 - No abstract available. KW - RTX-Toxins Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205860 SN - 2072-6651 VL - 12 IS - 6 ER - TY - JOUR A1 - Mostosi, Philipp A1 - Schindelin, Hermann A1 - Kollmannsberger, Philip A1 - Thorn, Andrea T1 - Haruspex: A Neural Network for the Automatic Identification of Oligonucleotides and Protein Secondary Structure in Cryo‐Electron Microscopy Maps JF - Angewandte Chemie International Edition N2 - In recent years, three‐dimensional density maps reconstructed from single particle images obtained by electron cryo‐microscopy (cryo‐EM) have reached unprecedented resolution. However, map interpretation can be challenging, in particular if the constituting structures require de‐novo model building or are very mobile. Herein, we demonstrate the potential of convolutional neural networks for the annotation of cryo‐EM maps: our network Haruspex has been trained on a carefully curated set of 293 experimentally derived reconstruction maps to automatically annotate RNA/DNA as well as protein secondary structure elements. It can be straightforwardly applied to newly reconstructed maps in order to support domain placement or as a starting point for main‐chain placement. Due to its high recall and precision rates of 95.1 % and 80.3 %, respectively, on an independent test set of 122 maps, it can also be used for validation during model building. The trained network will be available as part of the CCP‐EM suite. KW - DNA structures KW - electron microscopy KW - neural networks KW - protein structures KW - RNA structures Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214763 VL - 59 IS - 35 SP - 14788 EP - 14795 ER - TY - JOUR A1 - Jeanclos, Elisabeth A1 - Knobloch, Gunnar A1 - Hoffmann, Axel A1 - Fedorchenko, Oleg A1 - Odersky, Andrea A1 - Lamprecht, Anna‐Karina A1 - Schindelin, Hermann A1 - Gohla, Antje T1 - Ca\(^{2+}\) functions as a molecular switch that controls the mutually exclusive complex formation of pyridoxal phosphatase with CIB1 or calmodulin JF - FEBS Letters N2 - Pyridoxal 5′‐phosphate (PLP) is an essential cofactor for neurotransmitter metabolism. Pyridoxal phosphatase (PDXP) deficiency in mice increases PLP and γ‐aminobutyric acid levels in the brain, yet how PDXP is regulated is unclear. Here, we identify the Ca\(^{2+}\)‐ and integrin‐binding protein 1 (CIB1) as a PDXP interactor by yeast two‐hybrid screening and find a calmodulin (CaM)‐binding motif that overlaps with the PDXP‐CIB1 interaction site. Pulldown and crosslinking assays with purified proteins demonstrate that PDXP directly binds to CIB1 or CaM. CIB1 or CaM does not alter PDXP phosphatase activity. However, elevated Ca\(^{2+}\) concentrations promote CaM binding and, thereby, diminish CIB1 binding to PDXP, as both interactors bind in a mutually exclusive way. Hence, the PDXP‐CIB1 complex may functionally differ from the PDXP‐Ca\(^{2+}\)‐CaM complex. KW - calmodulin KW - chronophin KW - CIB1 KW - haloacid dehalogenase KW - pyridoxal phosphatase KW - vitamin B6 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217963 VL - 594 IS - 13 SP - 2099 EP - 2115 ER - TY - JOUR A1 - Kollikowski, Alexander M. A1 - Schuhmann, Michael K. A1 - Nieswandt, Bernhard A1 - Müllges, Wolfgang A1 - Stoll, Guido A1 - Pham, Mirko T1 - Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke JF - Annals of Neurology N2 - Objective Bridging the gap between experimental stroke and patients by ischemic blood probing during the hyperacute stage of vascular occlusion is crucial to assess the role of inflammation in human stroke and for the development of adjunct treatments beyond recanalization. Methods We prospectively observed 151 consecutive ischemic stroke patients with embolic large vessel occlusion of the anterior circulation who underwent mechanical thrombectomy. In all these patients, we attempted microcatheter aspiration of 3 different arterial blood samples: (1) within the core of the occluded vascular compartment and controlled by (2) carotid and (3) femoral samples obtained under physiological flow conditions. Subsequent laboratory analyses comprised leukocyte counting and differentiation, platelet counting, and the quantification of 13 proinflammatory human chemokines/cytokines. Results Forty patients meeting all clinical, imaging, interventional, and laboratory inclusion criteria could be analyzed, showing that the total number of leukocytes significantly increased under the occlusion condition. This increase was predominantly driven by neutrophils. Significant increases were also apparent for lymphocytes and monocytes, accompanied by locally elevated plasma levels of the T‐cell chemoattractant CXCL‐11. Finally, we found evidence that short‐term clinical outcome (National Institute of Health Stroke Scale at 72 hours) was negatively associated with neutrophil accumulation. Interpretation We provide the first direct human evidence that neutrophils, lymphocytes, and monocytes, accompanied by specific chemokine upregulation, accumulate in the ischemic vasculature during hyperacute stroke and may affect outcome. These findings strongly support experimental evidence that immune cells contribute to acute ischemic brain damage and indicate that ischemic inflammation initiates already during vascular occlusion. Ann Neurol 2020;87:466–479 KW - neurology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212168 VL - 87 IS - 3 ER - TY - JOUR A1 - Ries, Lena K. A1 - Liess, Anna K. L. A1 - Feiler, Christian G. A1 - Spratt, Donald E. A1 - Lowe, Edward D. A1 - Lorenz, Sonja T1 - Crystal structure of the catalytic C‐lobe of the HECT‐type ubiquitin ligase E6AP JF - Protein Science N2 - The HECT‐type ubiquitin ligase E6AP (UBE3A) is critically involved in several neurodevelopmental disorders and human papilloma virus‐induced cervical tumorigenesis; the structural mechanisms underlying the activity of this crucial ligase, however, are incompletely understood. Here, we report a crystal structure of the C‐terminal lobe (“C‐lobe”) of the catalytic domain of E6AP that reveals two molecules in a domain‐swapped, dimeric arrangement. Interestingly, the molecular hinge that enables this structural reorganization with respect to the monomeric fold coincides with the active‐site region. While such dimerization is unlikely to occur in the context of full‐length E6AP, we noticed a similar domain swap in a crystal structure of the isolated C‐lobe of another HECT‐type ubiquitin ligase, HERC6. This may point to conformational strain in the active‐site region of HECT‐type ligases with possible implications for catalysis. Significance Statement The HECT‐type ubiquitin ligase E6AP has key roles in human papilloma virus‐induced cervical tumorigenesis and certain neurodevelopmental disorders. Here, we present a crystal structure of the C‐terminal, catalytic lobe of E6AP, providing basic insight into the conformational properties of this functionally critical region of HECT‐type ligases. KW - dimerization KW - domain swapping KW - E3 enzyme KW - UBE3A KW - X‐ray crystallography Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214812 VL - 29 IS - 6 SP - 1550 EP - 1554 ER - TY - JOUR A1 - Peissert, Stefan A1 - Sauer, Florian A1 - Grabarczyk, Daniel B. A1 - Braun, Cathy A1 - Sander, Gudrun A1 - Poterszman, Arnaud A1 - Egly, Jean-Marc A1 - Kuper, Jochen A1 - Kisker, Caroline T1 - In TFIIH the Arch domain of XPD is mechanistically essential for transcription and DNA repair JF - Nature Communications N2 - The XPD helicase is a central component of the general transcription factor TFIIH which plays major roles in transcription and nucleotide excision repair (NER). Here we present the high-resolution crystal structure of the Arch domain of XPD with its interaction partner MAT1, a central component of the CDK activating kinase complex. The analysis of the interface led to the identification of amino acid residues that are crucial for the MAT1-XPD interaction. More importantly, mutagenesis of the Arch domain revealed that these residues are essential for the regulation of (i) NER activity by either impairing XPD helicase activity or the interaction of XPD with XPG; (ii) the phosphorylation of the RNA polymerase II and RNA synthesis. Our results reveal how MAT1 shields these functionally important residues thereby providing insights into how XPD is regulated by MAT1 and defining the Arch domain as a major mechanistic player within the XPD scaffold. KW - nucleotide excision repair KW - nuclear receptors KW - helicase KW - transactivation KW - fluorescence KW - recognition KW - subunit KW - binding KW - sulfur KW - kinease Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229857 VL - 11 IS - 1 ER - TY - JOUR A1 - Bangalore, Disha M. A1 - Heil, Hannah S. A1 - Mehringer, Christian F. A1 - Hirsch, Lisa A1 - Hemmen, Katharina A1 - Heinze, Katrin G. A1 - Tessmer, Ingrid T1 - Automated AFM analysis of DNA bending reveals initial lesion sensing strategies of DNA glycosylases JF - Scientific Reports N2 - Base excision repair is the dominant DNA repair pathway of chemical modifications such as deamination, oxidation, or alkylation of DNA bases, which endanger genome integrity due to their high mutagenic potential. Detection and excision of these base lesions is achieved by DNA glycosylases. To investigate the remarkably high efficiency in target site search and recognition by these enzymes, we applied single molecule atomic force microscopy (AFM) imaging to a range of glycosylases with structurally different target lesions. Using a novel, automated, unbiased, high-throughput analysis approach, we were able to resolve subtly different conformational states of these glycosylases during DNA lesion search. Our results lend support to a model of enhanced lesion search efficiency through initial lesion detection based on altered mechanical properties at lesions. Furthermore, its enhanced sensitivity and easy applicability also to other systems recommend our novel analysis tool for investigations of diverse, fundamental biological interactions. KW - atomic-force microscopy KW - base pairs KW - molecular structure KW - crystal structure KW - structural basis KW - repair KW - recognition KW - 8-oxoguanine KW - thymine KW - mismatches Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231338 VL - 10 ER - TY - JOUR A1 - Fazeli, Gholamreza A1 - Beer, Katharina B. A1 - Geisenhof, Michaela A1 - Tröger, Sarah A1 - König, Julia A1 - Müller-Reichert, Thomas A1 - Wehman, Ann M. T1 - Loss of the Major Phosphatidylserine or Phosphatidylethanolamine Flippases Differentially Affect Phagocytosis JF - Frontiers in Cell and Developmental Biology N2 - The lipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEth) are normally asymmetrically localized to the cytosolic face of membrane bilayers, but can both be externalized during diverse biological processes, including cell division, cell fusion, and cell death. Externalized lipids in the plasma membrane are recognized by lipid-binding proteins to regulate the clearance of cell corpses and other cell debris. However, it is unclear whether PtdSer and PtdEth contribute in similar or distinct ways to these processes. We discovered that disruption of the lipid flippases that maintain PtdSer or PtdEth asymmetry in the plasma membrane have opposite effects on phagocytosis in Caenorhabditis elegans embryos. Constitutive PtdSer externalization caused by disruption of the major PtdSer flippase TAT-1 led to increased phagocytosis of cell debris, sometimes leading to two cells engulfing the same debris. In contrast, PtdEth externalization caused by depletion of the major PtdEth flippase TAT-5 or its activator PAD-1 disrupted phagocytosis. These data suggest that PtdSer and PtdEth externalization have opposite effects on phagocytosis. Furthermore, externalizing PtdEth is associated with increased extracellular vesicle release, and we present evidence that the extent of extracellular vesicle accumulation correlates with the extent of phagocytic defects. Thus, a general loss of lipid asymmetry can have opposing impacts through different lipid subtypes simultaneously exerting disparate effects. KW - phagocytosis KW - lipid asymmetry KW - flippase KW - phosphatidylserine KW - phosphatidylethanolamine KW - extracellular vesicle Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208771 SN - 2296-634X VL - 8 ER - TY - JOUR A1 - Wölfel, Angela A1 - Sättele, Mathias A1 - Zechmeister, Christina A1 - Nikolaev, Viacheslov O. A1 - Lohse, Martin J. A1 - Boege, Fritz A1 - Jahns, Roland A1 - Boivin-Jahns, Valérie T1 - Unmasking features of the auto-epitope essential for β\(_1\)-adrenoceptor activation by autoantibodies in chronic heart failure JF - ESC Heart Failure N2 - Aims Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β1-adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine-map the conformational epitope within the second extracellular loop of the human β\(_1\)-adrenoceptor (β1ECII) that is targeted by stimulating β\(_1\)-receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto-epitope. Methods and results Non-conserved amino acids within the β\(_1\)EC\(_{II}\) loop (compared with the amino acids constituting the ECII loop of the β\(_2\)-adrenoceptor) were one by one replaced with alanine; potential intra-loop disulfide bridges were probed by cysteine–serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β1ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β\(_1\)-adrenoceptors bearing corresponding point mutations. With the use of stimulating β\(_1\)-receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β\(_1\)EC\(_{II}\) loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK\(^{211–214}\) motif and (ii) the intra-loop disulfide bond C\(^{209}\)↔C\(^{215}\). Of note, aberrant intra-loop disulfide bond C\(^{209}\)↔C\(^{216}\) almost fully disrupted the functional auto-epitope in cyclopeptides. Conclusions The conformational auto-epitope targeted by cardio-pathogenic β\(_1\)-receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β\(_1\)EC\(_{II}\) loop bearing the NDPK\(^{211–214}\) motif and the C\(^{209}\)↔C\(^{215}\) bridge while lacking cysteine C216. Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β\(_1\)-autoantibodypositive CHF. KW - antibody/autoantibody KW - β1-adrenoceptor/β1-adrenergic receptor KW - chronic heart failure KW - conformational auto-epitope KW - cyclic peptides/cyclopeptides KW - cyclopeptide therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235974 VL - 7 IS - 4 ER -