TY - JOUR A1 - Knorr, Johannes A1 - Rudolf, Philipp A1 - Nuernberger, Patrick T1 - A comparative study on chirped-pulse upconversion and direct multichannel MCT detection N2 - A comparative study is carried out on two spectroscopic techniques employed to detect ultrafast absorption changes in the mid-infrared spectral range, namely direct multichannel detection via HgCdTe (MCT) photodiode arrays and the newly established technique of chirped-pulse upconversion (CPU). Whereas both methods are meanwhile individually used in a routine manner, we directly juxtapose their applicability in femtosecond pump-probe experiments based on 1 kHz shot-to-shot data acquisition. Additionally, we examine different phase-matching conditions in the CPU scheme for a given mid-infrared spectrum, thereby simultaneously detecting signals which are separated by more than 200 cm−1. KW - Ultrafast spectroscopy KW - Upconversion KW - infrared spectroscopy KW - Lithium niobate KW - CCD, charge-coupled device Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111334 ER - TY - JOUR A1 - Brixner, Tobias A1 - Koch, Federico A1 - Kullmann, Martin A1 - Selig, Ulrike A1 - Nuernberger, Patrick A1 - Götz, Daniel C. G. A1 - Bringmann, Gerhard T1 - Coherent two-dimensional electronic spectroscopy in the Soret band of a chiral porphyrin dimer JF - New Journal of Physics N2 - Using coherent two-dimensional (2D) electronic spectroscopy in fully noncollinear geometry, we observe the excitonic coupling of β,β'-linked bis[tetraphenylporphyrinato-zinc(II)] on an ultrafast timescale in the excited state. The results for two states in the Soret band originating from an excitonic splitting are explained by population transfer with approximately 100 fs from the energetically higher to the lower excitonic state. This interpretation is consistent with exemplary calculations of 2D spectra for a model four-level system with coupling. KW - optics KW - quantum optics KW - laser Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96139 ER - TY - JOUR A1 - Verma, Pramod Kumar A1 - Steinbacher, Andreas A1 - Schmiedel, Alexander A1 - Nuernberger, Patrick A1 - Brixner, Tobias T1 - Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy JF - Structural Dynamics N2 - We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state. KW - time resolved spectroscopy KW - ground states KW - fluorescence spectra KW - absorption spectra KW - ultraviolet light KW - hydrogen bonding KW - excited states KW - reaction mechanisms KW - fluorescence KW - solvents Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181301 VL - 3 ER - TY - JOUR A1 - Knorr, Johannes A1 - Sokkar, Pandian A1 - Schott, Sebastian A1 - Costa, Paolo A1 - Thiel, Walter A1 - Sander, Wolfram A1 - Sanchez-Garcia, Elsa A1 - Nuernberger, Patrick T1 - Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures JF - Nature Communications N2 - Photochemical reactions in solution often proceed via competing reaction pathways comprising intermediates that capture a solvent molecule. A disclosure of the underlying reaction mechanisms is challenging due to the rapid nature of these processes and the intricate identification of how many solvent molecules are involved. Here combining broadband femtosecond transient absorption and quantum mechanics/molecular mechanics simulations, we show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding dynamics determine which reaction channels are accessible in binary solvent mixtures at room temperature. In-depth analysis of the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Our results show that adjacent solvent molecules take the role of key abettors rather than bystanders for the fate of the reactive intermediate. KW - Reaction kinetics and dynamics KW - Photochemistry Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165954 VL - 7 ER -