TY - JOUR A1 - Wolfahrt, Sonja A1 - Herman, Sandra A1 - Scholz, Claus-Jürgen A1 - Sauer, Georg A1 - Deissler, Helmut T1 - Identification of alternative transcripts of rat CD9 expressed by tumorigenic neural cell lines and in normal tissues JF - Genetics and Molecular Biology N2 - CD9 is the best-studied member of the tetraspanin family of transmembrane proteins. It is involved in various fundamental cellular processes and its altered expression is a characteristic of malignant cells of different origins. Despite numerous investigations confirming its fundamental role, the heterogeneity of CD9 or other tetraspanin proteins was considered only to be caused by posttranslational modification, rather than alternative splicing. Here we describe the first identification of CD9 transcript variants expressed by cell lines derived from fetal rat brain cells. Variant mRNA-B lacks a potential translation initiation codon in the alternative exon 1 and seems to be characteristic of the tumorigenic BT cell lines. In contrast, variant mRNA-C can be translated from a functional initiation codon located in its extended exon 2, and substantial amounts of this form detected in various tissues suggest a contribution to CD9 functions. From the alternative sequence of variant C, a different membrane topology ( 5 transmembrane domains) and a deviating spectrum of functions can be expected. KW - tetraspanin KW - CD9 KW - antigen KW - cancer KW - noncoding RNAs KW - nervous system KW - poor prognosis KW - tetraspanin protein KW - transcript KW - splice variant KW - membrane topology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131801 VL - 36 IS - 2 ER - TY - JOUR A1 - Dong, Meng A1 - Böpple, Kathrin A1 - Thiel, Julia A1 - Winkler, Bernd A1 - Liang, Chunguang A1 - Schueler, Julia A1 - Davies, Emma J. A1 - Barry, Simon T. A1 - Metsalu, Tauno A1 - Mürdter, Thomas E. A1 - Sauer, Georg A1 - Ott, German A1 - Schwab, Matthias A1 - Aulitzky, Walter E. T1 - Perfusion air culture of precision-cut tumor slices: an ex vivo system to evaluate individual drug response under controlled culture conditions JF - Cells N2 - Precision-cut tumor slices (PCTS) maintain tissue heterogeneity concerning different cell types and preserve the tumor microenvironment (TME). Typically, PCTS are cultured statically on a filter support at an air–liquid interface, which gives rise to intra-slice gradients during culture. To overcome this problem, we developed a perfusion air culture (PAC) system that can provide a continuous and controlled oxygen medium, and drug supply. This makes it an adaptable ex vivo system for evaluating drug responses in a tissue-specific microenvironment. PCTS from mouse xenografts (MCF-7, H1437) and primary human ovarian tumors (primary OV) cultured in the PAC system maintained the morphology, proliferation, and TME for more than 7 days, and no intra-slice gradients were observed. Cultured PCTS were analyzed for DNA damage, apoptosis, and transcriptional biomarkers for the cellular stress response. For the primary OV slices, cisplatin treatment induced a diverse increase in the cleavage of caspase-3 and PD-L1 expression, indicating a heterogeneous response to drug treatment between patients. Immune cells were preserved throughout the culturing period, indicating that immune therapy can be analyzed. The novel PAC system is suitable for assessing individual drug responses and can thus be used as a preclinical model to predict in vivo therapy responses. KW - precision-cut tumor slices KW - perfusion culture KW - tumor microenvironment KW - ovarian tumor KW - individual drug responses KW - mouse xenografts KW - preclinical model KW - personalized medicine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311030 SN - 2073-4409 VL - 12 IS - 5 ER -