TY - JOUR A1 - Wang, Xiaoliang A1 - Liu, Xuan A1 - Xiao, Yun A1 - Mao, Yue A1 - Wang, Nan A1 - Wang, Wei A1 - Wu, Shufan A1 - Song, Xiaoyong A1 - Wang, Dengfeng A1 - Zhong, Xingwang A1 - Zhu, Zhu A1 - Schilling, Klaus A1 - Damaren, Christopher T1 - On-orbit verification of RL-based APC calibrations for micrometre level microwave ranging system JF - Mathematics N2 - Micrometre level ranging accuracy between satellites on-orbit relies on the high-precision calibration of the antenna phase center (APC), which is accomplished through properly designed calibration maneuvers batch estimation algorithms currently. However, the unmodeled perturbations of the space dynamic and sensor-induced uncertainty complicated the situation in reality; ranging accuracy especially deteriorated outside the antenna main-lobe when maneuvers performed. This paper proposes an on-orbit APC calibration method that uses a reinforcement learning (RL) process, aiming to provide the high accuracy ranging datum for onboard instruments with micrometre level. The RL process used here is an improved Temporal Difference advantage actor critic algorithm (TDAAC), which mainly focuses on two neural networks (NN) for critic and actor function. The output of the TDAAC algorithm will autonomously balance the APC calibration maneuvers amplitude and APC-observed sensitivity with an object of maximal APC estimation accuracy. The RL-based APC calibration method proposed here is fully tested in software and on-ground experiments, with an APC calibration accuracy of less than 2 mrad, and the on-orbit maneuver data from 11–12 April 2022, which achieved 1–1.5 mrad calibration accuracy after RL training. The proposed RL-based APC algorithm may extend to prove mass calibration scenes with actions feedback to attitude determination and control system (ADCS), showing flexibility of spacecraft payload applications in the future. KW - reinforcement learning KW - antenna phase center calibration KW - K band ranging (KBR) KW - micrometre level microwave ranging KW - MSC: 49M37 KW - MSC: 65K05 KW - MSC: 90C30 KW - MSC: 90C40 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303970 SN - 2227-7390 VL - 11 IS - 4 ER -